Random Schrödinger operators with a constant electric field

Nariyuki Minami

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 3, page 307-344
  • ISSN: 0246-0211

How to cite

top

Minami, Nariyuki. "Random Schrödinger operators with a constant electric field." Annales de l'I.H.P. Physique théorique 56.3 (1992): 307-344. <http://eudml.org/doc/76569>.

@article{Minami1992,
author = {Minami, Nariyuki},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {random one-dimensional Schrödinger operators; absolutely continuous spectrum; purely singular continuous spectrum},
language = {eng},
number = {3},
pages = {307-344},
publisher = {Gauthier-Villars},
title = {Random Schrödinger operators with a constant electric field},
url = {http://eudml.org/doc/76569},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Minami, Nariyuki
TI - Random Schrödinger operators with a constant electric field
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 3
SP - 307
EP - 344
LA - eng
KW - random one-dimensional Schrödinger operators; absolutely continuous spectrum; purely singular continuous spectrum
UR - http://eudml.org/doc/76569
ER -

References

top
  1. [1] M. Ben-Artzi, Remarks on Schrödinger operators with an electric field and deterministic potentials, J. Math. Anal. Appl. Vol. 109, 1985, pp. 333-339. Zbl0579.34018MR802899
  2. [2] F. Bentosela, R. Carmona, P' Duclos, B. Simon, B. Souillard and R. Weder, Schrödinger operators with an electric field and random or deterministic potentials, Commun. Math. Phys., Vol. 88, 1983, pp. 387-397. Zbl0531.60061MR701924
  3. [3] R. Carmona, Exponential localization in one dimensional disordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. Zbl0491.60058MR650377
  4. [4] R. Carmona, Exponential localization in one dimensional dosordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. Zbl0491.60058MR650377
  5. [4] E.T. Copson, Asymptotic expansions. Cambridge University Press, Cambridge, 1965. Zbl0123.26001MR168979
  6. [5] F. Delyon, B. Simon and B. Souillard, From power pure point to continuous spectrum in disordered systems. Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 42, No. 3, 1985, pp. 283-309. Zbl0579.60056MR797277
  7. [6] D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl., Vol. 128, 1987, pp. 30-56. Zbl0666.34023MR915965
  8. [7] D.J. Gilbert, On subordinacy and analysis of Schrödinger operators with two singular endpoints. Proc. R. Soc. Edinburg, Vol. 112A, 1989, pp. 213-229. Zbl0678.34024
  9. [8] I.Ya. Goldsheid, S.A. Molchanov and L.A. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Funct. Anal. Appl., Vol. 11, No. 1, 1977, pp. 1-8. Zbl0368.34015
  10. [9] Ph. Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math. J., Vol. 15, 1948, pp. 697-709. Zbl0031.30606MR27927
  11. [10] Ph. Hartman, A characterization of the spectra of one-dimensional wave equations, Am. J. Math., Vol. 71, 1949, pp. 915-920. Zbl0035.18303MR33419
  12. [11] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland/Kodansha, 1981. Zbl0495.60005MR637061
  13. [12] K. Ito and H.P. Mckean, Diffusion processes and their sample paths, Springer, Berlin, 1965. Zbl0127.09503
  14. [13] S. Kotani, Lyapounov exponents and spectra for one-dimensional random Schrödinger operators, Contemporary Math., Vol. 50, 1985, pp. 277-286. Zbl0587.60054MR841099
  15. [14] S. Kotani and B. Simon, Localization in general one-dimensional random systems. II. Continuum Schrödinger operators, Commun. Math. Phys., Vol. 112, 1987, pp. 103- 119. Zbl0637.60080MR904140
  16. [15] N. Minami, Schrödinger operator with potential which is the derivative of a temporally homogeneous Lévy process. Probability and mathematical statistics. Fifth JapanU.S.S.R. symposium proceedings, Lect. Notes Math., 1299, 1986, pp. 298-304. Zbl0636.60068MR936002
  17. [16] N. Minami, Exponential and super-exponential localizations for one-dimensional Schrödinger operators with Lévy noise potentials. Tsukuba J. Math., Vol. 13, No. 1, 1989, pp. 225-282. Zbl0694.60058MR1003604
  18. [17] S.A. Molchanov, The structure of eigenfunctions of one-dimensional unordered structures, Math. U.S.S.R. Izv., Vol. 12, No. 1, 1978, pp. 69-101. Zbl0401.34023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.