Random Schrödinger operators with a constant electric field
Annales de l'I.H.P. Physique théorique (1992)
- Volume: 56, Issue: 3, page 307-344
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMinami, Nariyuki. "Random Schrödinger operators with a constant electric field." Annales de l'I.H.P. Physique théorique 56.3 (1992): 307-344. <http://eudml.org/doc/76569>.
@article{Minami1992,
author = {Minami, Nariyuki},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {random one-dimensional Schrödinger operators; absolutely continuous spectrum; purely singular continuous spectrum},
language = {eng},
number = {3},
pages = {307-344},
publisher = {Gauthier-Villars},
title = {Random Schrödinger operators with a constant electric field},
url = {http://eudml.org/doc/76569},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Minami, Nariyuki
TI - Random Schrödinger operators with a constant electric field
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 3
SP - 307
EP - 344
LA - eng
KW - random one-dimensional Schrödinger operators; absolutely continuous spectrum; purely singular continuous spectrum
UR - http://eudml.org/doc/76569
ER -
References
top- [1] M. Ben-Artzi, Remarks on Schrödinger operators with an electric field and deterministic potentials, J. Math. Anal. Appl. Vol. 109, 1985, pp. 333-339. Zbl0579.34018MR802899
- [2] F. Bentosela, R. Carmona, P' Duclos, B. Simon, B. Souillard and R. Weder, Schrödinger operators with an electric field and random or deterministic potentials, Commun. Math. Phys., Vol. 88, 1983, pp. 387-397. Zbl0531.60061MR701924
- [3] R. Carmona, Exponential localization in one dimensional disordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. Zbl0491.60058MR650377
- [4] R. Carmona, Exponential localization in one dimensional dosordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. Zbl0491.60058MR650377
- [4] E.T. Copson, Asymptotic expansions. Cambridge University Press, Cambridge, 1965. Zbl0123.26001MR168979
- [5] F. Delyon, B. Simon and B. Souillard, From power pure point to continuous spectrum in disordered systems. Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 42, No. 3, 1985, pp. 283-309. Zbl0579.60056MR797277
- [6] D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl., Vol. 128, 1987, pp. 30-56. Zbl0666.34023MR915965
- [7] D.J. Gilbert, On subordinacy and analysis of Schrödinger operators with two singular endpoints. Proc. R. Soc. Edinburg, Vol. 112A, 1989, pp. 213-229. Zbl0678.34024
- [8] I.Ya. Goldsheid, S.A. Molchanov and L.A. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Funct. Anal. Appl., Vol. 11, No. 1, 1977, pp. 1-8. Zbl0368.34015
- [9] Ph. Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math. J., Vol. 15, 1948, pp. 697-709. Zbl0031.30606MR27927
- [10] Ph. Hartman, A characterization of the spectra of one-dimensional wave equations, Am. J. Math., Vol. 71, 1949, pp. 915-920. Zbl0035.18303MR33419
- [11] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland/Kodansha, 1981. Zbl0495.60005MR637061
- [12] K. Ito and H.P. Mckean, Diffusion processes and their sample paths, Springer, Berlin, 1965. Zbl0127.09503
- [13] S. Kotani, Lyapounov exponents and spectra for one-dimensional random Schrödinger operators, Contemporary Math., Vol. 50, 1985, pp. 277-286. Zbl0587.60054MR841099
- [14] S. Kotani and B. Simon, Localization in general one-dimensional random systems. II. Continuum Schrödinger operators, Commun. Math. Phys., Vol. 112, 1987, pp. 103- 119. Zbl0637.60080MR904140
- [15] N. Minami, Schrödinger operator with potential which is the derivative of a temporally homogeneous Lévy process. Probability and mathematical statistics. Fifth JapanU.S.S.R. symposium proceedings, Lect. Notes Math., 1299, 1986, pp. 298-304. Zbl0636.60068MR936002
- [16] N. Minami, Exponential and super-exponential localizations for one-dimensional Schrödinger operators with Lévy noise potentials. Tsukuba J. Math., Vol. 13, No. 1, 1989, pp. 225-282. Zbl0694.60058MR1003604
- [17] S.A. Molchanov, The structure of eigenfunctions of one-dimensional unordered structures, Math. U.S.S.R. Izv., Vol. 12, No. 1, 1978, pp. 69-101. Zbl0401.34023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.