Higher order graded and berezinian lagrangian densities and their Euler-Lagrange equations

J. Monterde

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 1, page 3-26
  • ISSN: 0246-0211

How to cite

top

Monterde, J.. "Higher order graded and berezinian lagrangian densities and their Euler-Lagrange equations." Annales de l'I.H.P. Physique théorique 57.1 (1992): 3-26. <http://eudml.org/doc/76577>.

@article{Monterde1992,
author = {Monterde, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Euler-Langrange equations; graded manifolds; variational calculus},
language = {eng},
number = {1},
pages = {3-26},
publisher = {Gauthier-Villars},
title = {Higher order graded and berezinian lagrangian densities and their Euler-Lagrange equations},
url = {http://eudml.org/doc/76577},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Monterde, J.
TI - Higher order graded and berezinian lagrangian densities and their Euler-Lagrange equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 1
SP - 3
EP - 26
LA - eng
KW - Euler-Langrange equations; graded manifolds; variational calculus
UR - http://eudml.org/doc/76577
ER -

References

top
  1. [1] M. Batchelor, The Structure of Supermanifolds, Trans. Amer. Math. Soc., Vol. 253, 1979, pp. 329-338. Zbl0413.58002MR536951
  2. [2] D. Hernández Ruipérez and J. Muñoz Masqué, Global Variational Calculus on Graded Manifolds, I: Graded Jet Bundles, Structure 1-Form and Graded Infinitesimal Contact Transformations, J. Math. Pures Appl., Vol. 63, 1984, pp. 283-309. Zbl0509.58003MR794053
  3. [3] D. Hernández Ruipérez and J. Muñoz Masqué, Global Variational Calculus on Graded Manifolds, II, J. Math. Pures Appl., Vol. 63, 1985, pp. 87-104. Zbl0552.58014MR802385
  4. [4] D. Hernández Ruipérez and J. Muñoz Masqué, Variational Berezinian Problems and their Relationship with Graded Variational Problems, in "Proceedings of the Conference on Differential Geometric Methods in Mathematical Physics, Salamanca1985, Lect. Notes Math. Ser., No. 1251", Springer Verlag, 1987, pp. 137-149. Zbl0627.58020MR897117
  5. [5] D. Hernández Ruipérez and J. Muñoz Masqué, Construction intrinsèque du faisceau de Berezin d'une variété graduée, C. R. Acad. Sci. Paris, t. 301, Series I, 1985, pp. 915-918. Zbl0592.58042MR829061
  6. [6] J.B. Kostant, Graded Manifolds, Graded Lie Theory and Prequantization, in "Proceedings of the Conference on Differential Geometric Methods in Mathematical Physics, Bonn1975, Lect. Notes Math., Ser., No. 570", Springer Verlag, 1977, pp. 177-306. Zbl0358.53024MR580292
  7. [7] D.A. Leites, Introduction to the Theory of Supermanifolds, Russian Math. Surveys, Vol. 35, 1, 1980,Uspehi Math. Nauk., Vol. 35, 1980, pp. 1-64. Zbl0462.58002MR565567
  8. [8] J. Muñoz Masqué, Poincaré-Cartan forms in higher order variational problems, Rev. Mat. Iberoramericana, Vol. 1, No. 20, 1985, pp. 85-126. Zbl0606.49026MR850411
  9. [9] F. Takens, A Global Version of the Inverse Problem of the Calculus of Variations, J. Diff. Geom., 14, 1979, pp. 543-562. Zbl0463.58015MR600611

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.