Transfer operator for piecewise affine approximations of interval maps

Viviane Baladi; Stefano Isola; Bernard Schmitt

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 62, Issue: 3, page 251-265
  • ISSN: 0246-0211

How to cite

top

Baladi, Viviane, Isola, Stefano, and Schmitt, Bernard. "Transfer operator for piecewise affine approximations of interval maps." Annales de l'I.H.P. Physique théorique 62.3 (1995): 251-265. <http://eudml.org/doc/76675>.

@article{Baladi1995,
author = {Baladi, Viviane, Isola, Stefano, Schmitt, Bernard},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Markov interval maps; transfer operator; piecewise affine approximations},
language = {eng},
number = {3},
pages = {251-265},
publisher = {Gauthier-Villars},
title = {Transfer operator for piecewise affine approximations of interval maps},
url = {http://eudml.org/doc/76675},
volume = {62},
year = {1995},
}

TY - JOUR
AU - Baladi, Viviane
AU - Isola, Stefano
AU - Schmitt, Bernard
TI - Transfer operator for piecewise affine approximations of interval maps
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 3
SP - 251
EP - 265
LA - eng
KW - Markov interval maps; transfer operator; piecewise affine approximations
UR - http://eudml.org/doc/76675
ER -

References

top
  1. [1] V. Baladi, Infinite kneading matrices and weighted zeta functions of interval maps, Preprint, 1933, to appear in J. Funct. Anal. Zbl0824.58038MR1317716
  2. [2] V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys., Vol. 127, 1990, pp. 459-477. Zbl0703.58048MR1040891
  3. [3] V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., Vol. 156, 1993, pp. 355-385. (See also Erratum, Comm. Math. Phys., Vol. 166, 1994, pp. 219-220.) Zbl0809.60101MR1233850
  4. [4] P. Collet, Some ergodic properties of maps of the interval, Dynamical Systems and Frustrated Systems, R. Bamon, J.-M. Gambaudo and S. Martinez Eds., 1991 (to appear). Zbl0876.58024MR1600931
  5. [5] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math., Vol. 623, 1977. Zbl0381.47001MR482359
  6. [6] P. Gora and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Can. J. Math., XLI, 1989, pp. 855-869. Zbl0689.28007MR1015586
  7. [7] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., Vol. 180, 1982, pp. 119-140. Zbl0485.28016MR656227
  8. [8] T. Kato, Perturbation Theory for Linear Operators, Second printing of second ed., Springer-Verlag, Berlin, 1984. 
  9. [9] G. Keller, Stochastic stability in some chaotic dynamical systems, Mh. Math., Vol. 94, 1982, pp. 313-333. Zbl0496.58010MR685377
  10. [10] G. Keller, On the rate of convergence to equilibrium in one-dimensional dynamics, Comm. Math. Phys., Vol. 96, 1984, pp. 181-193. Zbl0576.58016MR768254
  11. [11] T.-Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture, J. of Approx. Theory, Vol. 17, 1976, pp. 177-186. Zbl0357.41011MR412689
  12. [12] W. De Melo and S. Van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
  13. [13] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, 1978. Zbl0401.28016MR511655
  14. [14] M. Rychlik, Bounded variation and invariant measures, Studia Math., Vol. LXXVI, 1983, pp. 69-80. Zbl0575.28011MR728198
  15. [15] M. Rychlik and E. Sorets, Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys., Vol. 150, 1992, pp. 217-236. Zbl0770.58021MR1194016
  16. [16] H.J. Scholtz, Markov chains and discrete chaos, Physica, Vol. 4D, 1982, pp. 281-286., MR653782
  17. [17] S. Ulam, Problems in modern mathematics, Interscience Publishers, New York, 1960. Zbl0137.24201MR120127
  18. [18] S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., Vol. 246, 1978, pp. 493-500. Zbl0401.28011MR515555

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.