Axiomatic approach to perturbative quantum field theory

O. Steinmann

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 4, page 399-409
  • ISSN: 0246-0211

How to cite

top

Steinmann, O.. "Axiomatic approach to perturbative quantum field theory." Annales de l'I.H.P. Physique théorique 63.4 (1995): 399-409. <http://eudml.org/doc/76704>.

@article{Steinmann1995,
author = {Steinmann, O.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {perturbation theory; relativistic field theory},
language = {eng},
number = {4},
pages = {399-409},
publisher = {Gauthier-Villars},
title = {Axiomatic approach to perturbative quantum field theory},
url = {http://eudml.org/doc/76704},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Steinmann, O.
TI - Axiomatic approach to perturbative quantum field theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 4
SP - 399
EP - 409
LA - eng
KW - perturbation theory; relativistic field theory
UR - http://eudml.org/doc/76704
ER -

References

top
  1. [1] R.F. Streater and A.S. Wightman, PCT, Spin & Statistics, and All That, Reading MA, Benjamin/Cummings, 1978. Zbl0135.44305
  2. [2] R. Jost, The General Theory of Quantized Fields, Providence RI, Am. Math. Soc., 1965. Zbl0127.19105MR177667
  3. [3] N.N. Bogolubov, A.A. Logunov, A.I. Oksak and I.T. Todorov, General Principles of Quantum Field Theory, Dordrecht, Kluwer, 1990. Zbl0732.46040
  4. [4] R. Haag, Local Quantum Physics, Berlin, Springer, 1992. Zbl0777.46037MR1182152
  5. [5] A. Ostendorf, Feynman rules for Wightman functions, Ann. Inst. H. Poincaré, Vol. 40, 1984, p. 273. MR770084
  6. [6] O. Steinmann, Perturbation theory of Wightman functions, Commun. Math. Phys., Vol. 152, 1993, p. 627. Zbl0768.60101MR1213304
  7. [7] O. Steinmann, Perturbative quantum field theory at positive temperatures, Commun. Math. Phys., Vol. 170, 1995, p. 405. Zbl0827.47055MR1334402
  8. [8] J.I. Kapusta, Finite-Temperature Field Theory, Cambridge, Cambridge University Press, 1989. Zbl0743.70020MR1110583
  9. [9] N.P. Landsman and Ch.G. van Weert, Real- and imaginary-time field theory at finite temperature and density, Phys. Reps., Vol. 145, 1987, p. 141. MR870769
  10. [10] O. Steinmann, Asymptotic completeness in QED, Nucl. Phys., Vol. B350, 1991, p. 355; Nucl. Phys., Vol. B361, 1991, p. 173. 

NotesEmbed ?

top

You must be logged in to post comments.