Scattering theory for plektons in 2 + 1 dimensions

K. Fredenhagen; M. R. Gaberdiel

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 4, page 523-541
  • ISSN: 0246-0211

How to cite

top

Fredenhagen, K., and Gaberdiel, M. R.. "Scattering theory for plektons in 2 + 1 dimensions." Annales de l'I.H.P. Physique théorique 64.4 (1996): 523-541. <http://eudml.org/doc/76730>.

@article{Fredenhagen1996,
author = {Fredenhagen, K., Gaberdiel, M. R.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering states; non-abelian braid group statistic; plektons; vector bundle; universal covering space; space of non-coinciding velocities in three-dimensional Minkowski space},
language = {eng},
number = {4},
pages = {523-541},
publisher = {Gauthier-Villars},
title = {Scattering theory for plektons in 2 + 1 dimensions},
url = {http://eudml.org/doc/76730},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Fredenhagen, K.
AU - Gaberdiel, M. R.
TI - Scattering theory for plektons in 2 + 1 dimensions
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 523
EP - 541
LA - eng
KW - scattering states; non-abelian braid group statistic; plektons; vector bundle; universal covering space; space of non-coinciding velocities in three-dimensional Minkowski space
UR - http://eudml.org/doc/76730
ER -

References

top
  1. [1] Artin E.. In: LANG S. and TATE J. E. Eds. The collected papers of E. ARTIN. Addison-Wesley, 1965. Zbl0146.00101MR176888
  2. [2] Buchholz D. and Fredenhagen K., Locality and the structure of particle states. Commun. Math. Phys., Vol. 84, 1982, pp. 1-54. Zbl0498.46061MR660538
  3. [3] Doplicher S., Haag, R. and Roberts J.E., Local Observables and particle statistics I + II. Commun. Math. Phys., Vol. 23, 1971, pp. 199-230 and Vol. 35, 1974, pp. 49-85. MR297259
  4. [4] Doplicher S. and Roberts J.E., Why there is a Field Algebra with a Compact Gauge Group Describing the Superselection Structure in Particle Physics, Commun. Math. Phys., Vol. 131, 1990, pp. 51-107. Zbl0734.46042MR1062748
  5. [5] Ferrari F., Conformal field theories with nonabelian symmetry group. Phys. Lett., Vol. B277, 1992, pp. 423-434, Ferrari F.., Multivalued fields on the complex plane and braid group statistics. Int. Journ. Mod. Phys., Vol. A9, 1994, pp. 313-326. Zbl0985.81694MR1154744
  6. [6] Fredenhagen K., On the existence of antiparticles, Commun. Math. Phys., Vol. 79, 1981, pp. 141-151. MR609233
  7. [7] Fredenhagen K., Sum rules for spins in (2 + 1)-dimensional quantum field theory. In: DOEBNER H. D. and HENNIG J. Eds. Quantum Groups. Proceedings, Quantum Group Workshop Clausthal 1989. Lecture Notes in Physics, Vol. 370, pp. 340-348, Springer1990. Zbl0724.53053MR1201836
  8. [8] Fredenhagen K., Generalizations of the theory of superselection sectors. In: KASTLER Ed, The Algebraic Theory of Superselection Sectors, pp. 379-387. World Scientific1990. MR1147469
  9. [9] Fredenhagen K., Structure of Superselection Sectors in Low Dimensional Quantum Field Theory. In: CHAU L. L. and NAHM W. Eds., Differential Geometric Methods in Theoretical Physics. Plenum Press1990. Zbl1210.81068MR1169477
  10. [10] Fredenhagen K., Global observables in local quantum physics. In: ARAKI H. et al. Eds., Quantum and Non-Commutative Analysis, pp. 41-51. Kluwer1993. Zbl0847.46043MR1276280
  11. [11] Fredenhagen K. and Gaberdiel, M.R.: in preparation. 
  12. [12] Fredenhagen K., Gaberdiel M.R. and Rüger S.M., Scattering States of Plektons (Particles with Braid Group Statistics) in 2 + 1 Dimensional Quantum Field Theory. DAMTP-94-90, to appear in Commun. Math. Phys. Zbl0851.46050MR1370098
  13. [13] Fredenhagen K., Rehren K.-H.. and Schroer B., Superselection sectors with braid group statistics and exchange algebras. I: General theory, II: Geometric aspects and conformal covariance. Commun. Math. Phys., Vol. 125, 1989, pp. 201-226 and Rev. Math. Phys., Special Issue, 1992, pp. 113-157. Zbl0682.46051MR1016869
  14. [14] Fröhlich J. and Gabbiani F., Braid Statistics in Local Quantum Field Theory, Rev. Math.. Phys., Vol. 2, 1990, pp. 251. Zbl0723.57002MR1104414
  15. [15] Fröhlich J. and Marchetti P.A., Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys., Vol. B356, 1991, pp. 533-573. MR1115846
  16. [16] Guido D. and Longo R., Relativistic invariance and large conjugation in quantum field theory. Commun. Math. Phys., Vol. 148, 1992, pp. 521-551. Zbl0771.46039MR1181069
  17. [17] Haag R., Quantum field theories with composite particles and asymptotic completeness. Phys. Rev., Vol. 112, 1958, pp. 669-673; Ruelle D., On the asymptotic condition in quantum field theory. Helv. Phys. Acta, Vol. 35, 1962, pp. 147-163. Zbl0085.43602MR99859
  18. [18] Haag R., Local Quantum Physics. Springer1992. Zbl0777.46037MR1182152
  19. [19] Laughlin R.B., Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett., Vol. 50, 1983, pp. 1395-1398; Fröhlich J., et al., The fractional quantum Hall effect, Chern-Simons theory, and integral lattices. Preprint, ETH-TH/94-18. 
  20. [20] Leinaas J.M., Myrheim J., On the theory of identical particles. Il Nuovo Cimento, Vol. 37B, 1977, pp. 1-23. 
  21. [21] Longo R., Index of subfactors and statistics of quantum fields I + II. Commun. Math. Phys., Vol. 126, 1989, pp. 217-247 and Vol. 130, 1990, pp. 285-309. Zbl0682.46045MR1027496
  22. [22] Mack G. and Schomerus V., Conformal field algebras with quantum symmetry from the theory of superselection sectors, Commun. Math. Phys., Vol. 134, 1990, pp. 139-196. Zbl0715.17028MR1079804
  23. [23] Mund J. and Schrader R., Hilbert spaces for nonrelativistic and relativistic 'Free' Plektons (particles with braid group statistics). SFB 288 Preprint No. 74, 1993. 
  24. [24] Reed M. and Simon B., Methods of modem mathematical physics. III Scattering Theory. Academic Press1979. Zbl0405.47007MR529429
  25. [25] Rehren K.-H. and Schroer B., Einstein causality and Artin braids. Nucl. Phys., Vol. B312, 1989, pp. 715-750. MR980192
  26. [26] Rehren K.-H., Field operators for anyons and plektons, Commun. Math. Phys., Vol. 145, 1992, pp. 123-148. Zbl0766.46047MR1155286
  27. [27] Roberts J.E., The Statistical Dimension, Conjugation and the Jones Index. To appear in Rev. Math. Phys. Zbl0836.46056MR1332981
  28. [28] Schroer B., Scattering properties of anyons and plektons. Presented at the "XXIV Symposium of the theory of elementary particles" in Gosen, Berlin, 1990. 
  29. [29] Steenrod N., The Topology of Fiber Bundles, Princeton University Press, 1951. Zbl0054.07103
  30. [30] Schrader R., Notes on Hilbert spaces with braid group statistics. (Unpublished notes 1989). 
  31. [31] Tscheuschner R.D., Topological Spin-Statistics relation in quantum field theory. Int. Journ. Theor. Phys., Vol. 28, 10, 1989, pp. 1269-1310. Zbl0737.58070MR1031608
  32. [32] Wilczek F., Quantum Mechanics of Fractional-Spin Particles, Phys. Rev. Lett., Vol. 49, 1982, pp. 957-959. MR675053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.