A duality between Schrödinger operators on graphs and certain Jacobi matrices

P. Exner

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 4, page 359-371
  • ISSN: 0246-0211

How to cite

top

Exner, P.. "A duality between Schrödinger operators on graphs and certain Jacobi matrices." Annales de l'I.H.P. Physique théorique 66.4 (1997): 359-371. <http://eudml.org/doc/76756>.

@article{Exner1997,
author = {Exner, P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operators; Kronig-Penney-type Hamiltonian; bijective correspondence; graphs; rectangular lattices; magnetic field; Maryland-type model},
language = {eng},
number = {4},
pages = {359-371},
publisher = {Gauthier-Villars},
title = {A duality between Schrödinger operators on graphs and certain Jacobi matrices},
url = {http://eudml.org/doc/76756},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Exner, P.
TI - A duality between Schrödinger operators on graphs and certain Jacobi matrices
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 4
SP - 359
EP - 371
LA - eng
KW - Schrödinger operators; Kronig-Penney-type Hamiltonian; bijective correspondence; graphs; rectangular lattices; magnetic field; Maryland-type model
UR - http://eudml.org/doc/76756
ER -

References

top
  1. [Ad] V.M. Adamyan, Scattering matrices for microschemes, Oper.Theory: Adv. Appl., Vol. 59, 1992, pp. 1-10. Zbl0793.47006MR1246807
  2. [AGHH] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer, Heidelberg1988. Zbl0679.46057MR926273
  3. [AL] Y. Avishai and J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires, Phys. Rev., Vol. B45, 1992, pp. 1074-1095. 
  4. [AEL] J.E. Avron, P. Exner and Y. Last, Periodic Schrödinger operators with large gaps and Wannier-Stark ladders, Phys.Rev.Lett., Vol. 72 (1994, pp. 896-899. Zbl0942.34503
  5. [ARZ] J.E. Avron, A. Raveh and B. Zur, Adiabatic transport in multiply connected systems, Rev.Mod.Phys., Vol. 60, 1988, pp. 873-915. MR969997
  6. [Az] M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, Vol. 19, 1964, pp. 634-647. 
  7. [Be] J. Bellissard, Gap labelling theorem for Schrödinger operators in Number Theory and Physics, M. WALDSCHMIDT et al., eds., Springer, Heidelberg1992, pp. 538-630. Zbl0833.47056MR1221111
  8. [BFLT] J. Bellissard, A. Formoso, R. Lima and D. Testard, Quasi-periodic interactions with a metal-insulator transition, Phys. Rev., Vol. B26, 1982, pp. 3024-3030. 
  9. [BKN] J.F. Brasche, V. Koshmanenko and H. Neidhardt, New aspects of Krein's extension theory, Ukrainian J.Math., Vol. 46, 1994, pp. 37-54. Zbl0835.47002MR1294812
  10. [BT] W. Bulla and T. Trenckler, The free Dirac operator on compact and non-compact graphs, J. Math. Phys., Vol. 31, 1990, pp. 1157-1163. Zbl0699.47032MR1050469
  11. [CFKS] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer, Berlin1987. Zbl0619.47005
  12. [DSS] F. Delyon, B. Simon and B. Souillard, From power pure point to continuous spectrum in disordered systems, Ann. Inst. H. Poincaré, Vol. A42, 1985, pp. 283-309. Zbl0579.60056MR797277
  13. [E1] P. Exner, The absence of the absolutely continuous spectrum for δ' Wannier-Stark ladders, J. Math. Phys., Vol. 36, 1995, pp. 4561-4570 . Zbl0884.47049MR1347099
  14. [E2] P. Exner, Lattice Kronig-Penney models, Phys. Rev. Lett., Vol. 74, 1995, pp. 3503- 3506. 
  15. [E3] P. Exner, Contact interactions on graphs, J. Phys., Vol. A29, 1996, pp. 87-102 . Zbl0916.47056MR1381435
  16. [EG] P. Exner and R. Gawlista, Band spectra of rectangular graph superlattices, Phys. Rev., Vol. B53, 1996, pp. 7275-7286. 
  17. [EŠ] P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys., Vol. 28, 1989, pp. 7-26. Zbl0749.47038MR1109248
  18. [GH] F. Gesztesy and H. Holden, A new class of solvable models in quantum mechanics describing point interactions on the line, J. Phys., Vol. A20, 1987, pp. 5157-5177. Zbl0627.34030MR914699
  19. [GHK] F. Gesztesy, H. Holden and W. Kirsch, On energy gaps in a new type of analytically solvable model in quantum mechanics, J. Math. Anal. Appl., Vol. 134, 1988, pp. 9-29. Zbl0669.47002MR958850
  20. [GLRT] J. Gratus, C.J. Lambert, S.J. Robinson and R.W. Tucker, Quantum mechanics on graphs, J. Phys., Vol. A27, 1994, pp. 6881-6892. Zbl0858.47041MR1306837
  21. [GP] N.I. Gerasimenko and B.S. Pavlov, Scattering problem on noncompact graphs, Teor. Mat. Fiz., Vol. 74, 1988, pp. 345-359. Zbl0659.47006MR953298
  22. [Ha] P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Roy. Soc. (London), Vol. A68, 1955, pp. 874-878. Zbl0065.23708
  23. [Ho] D.R. Hofstadter, Energy levels and wavefunctions for Bloch electrons in rational and irrational magnetic fields, Phys. Rev., Vol. B14, 1976, pp. 2239-2249. 
  24. [Kr] M.G. Krein, The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications I, II, Mat. Sbornik, Vol. 20, 1947, pp. 431-495, Vol. 21, 1947, pp. 365-404. Zbl0029.14103
  25. [La] Y. Last, Zero measure spectrum for almost Mathieu operator, Commun. Math. Phys., Vol. 164, 1994, pp. 421-432. Zbl0814.11040MR1289331
  26. [Ma] L. Malozemov, The integrated density of states for the difference Laplacian on the modified Koch curve, Commun. Math. Phys. Vol. 156, 1993, pp. 387-397. Zbl0786.58039MR1233851
  27. [Mar] V.A. Marchenko, Sturm-Liouville Operators and Applications, Operator Theory: Advances and Applications, Vol. 22; Birkhäuser, Basel1986. Zbl0592.34011MR897106
  28. [Ne] G. Nenciu, To the theory of self-adjoint extensions of symmetric operators with a spectral gap, Funkc. Anal. Appl., Vol. 19, 1985, pp. 81-82. Zbl0581.47005
  29. [Ph] P. Phariseau, The energy spectrum of an amorhous substance, Physica, Vol. 26, 1960, pp. 1185-1191. Zbl0095.44604MR127344
  30. [PGF] R. Praivge, D. Grempel and S. Fishman, A solvable model of quantum motion in an incommensurate potential, Phys. Rev., Vol. B29, 1984, pp. 6500-6512. MR749700
  31. [RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis. Self-adjointness, IV. Analysis of Operators, Academic Press, New York1975, 1978. Zbl0308.47002MR493420
  32. [Re] W.T. Reid, Ordinary Differential Equations, J. Wiley, New York1971. Zbl0212.10901MR273082
  33. [RuS] K. Ruedenberg and C.W. Scherr, Free-electron network model for conjugated systems, I. Theory, J. Chem. Phys., Vol. 21, 1953, pp. 1565-1581. 
  34. [Sh] M.A. Shubin, Discrete magnetic Laplacian, Commun. Math. Phys.164, 1994, pp. 259-275. Zbl0811.46079MR1289325
  35. [Si] B. Simon, Almost periodic Schrödinger operators: a review, Adv. Appl. Math., Vol. 3, 1982, pp. 463-490. Zbl0545.34023MR682631
  36. [Su] T. Sunada, Generalized Harper operator on a graph, in Workshop on Zeta Function in Number Theory and Geometric Analysis in Honor of Jun-Ichi Igusa, Johns Hopkins University1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.