The essential spectrum of relativistic multi-particle operators

Roger T. Lewis; Heinz Siedentop; Simeon Vugalter

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 1, page 1-28
  • ISSN: 0246-0211

How to cite

top

Lewis, Roger T., Siedentop, Heinz, and Vugalter, Simeon. "The essential spectrum of relativistic multi-particle operators." Annales de l'I.H.P. Physique théorique 67.1 (1997): 1-28. <http://eudml.org/doc/76759>.

@article{Lewis1997,
author = {Lewis, Roger T., Siedentop, Heinz, Vugalter, Simeon},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {pseudo-relativistic electrons; HWZ theorem; quasi-relativistic Hamiltonian; relativistic matter stability},
language = {eng},
number = {1},
pages = {1-28},
publisher = {Gauthier-Villars},
title = {The essential spectrum of relativistic multi-particle operators},
url = {http://eudml.org/doc/76759},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Lewis, Roger T.
AU - Siedentop, Heinz
AU - Vugalter, Simeon
TI - The essential spectrum of relativistic multi-particle operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 1
SP - 1
EP - 28
LA - eng
KW - pseudo-relativistic electrons; HWZ theorem; quasi-relativistic Hamiltonian; relativistic matter stability
UR - http://eudml.org/doc/76759
ER -

References

top
  1. [1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators. Mathematical Notes 29. Princeton University Press, Princeton, 1 edition, 1982. Zbl0503.35001MR745286
  2. [2] E Balslev, Schrödinger operators with symmetries. Rep. Math. Phys., Vol. 5, 1974, pp. 219-280. Zbl0296.35021MR376004
  3. [3] E Balslev, Schrödinger operators with symmetries. II. Rep. Math. Phys., Vol. 5, 1974, pp. 393-413. Zbl0296.35022MR376005
  4. [4] H.L. Cycon, R.G. Froese, Werner Kirsch, and Barry Simon. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Text and Monographs in Physics. Springer-Verlag, Berlin, 1 edition, 1987. Zbl0619.47005MR883643
  5. [5] W.D. Evans, R.T. Lewis and Y. Saitö, The Agmon spectral function for molecular hamiltonians with symmetry restrictions. Proc. Royal Soc. Lond. A, Vol. 440, 1993, pp. 621-638. Zbl0804.35028MR1220214
  6. [6] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta, Vol. 39, 1966, pp. 451-462. Zbl0141.44701MR211711
  7. [7] K. Jörgens and J. Weidmann, Spectral Properties of Hamiltonian Operators, Vol. 313 of Lecture Notes in Mathematics.Springer-Verlag, Berlin, 1 edition, 1973. Zbl0248.35002MR492941
  8. [8] E.H. Lieb, M. Loss, and H. Siedentop, Stability of Relativistic Matter via Thomas-Fermi Theory. Helv. Phys. Acta, In press. Zbl0866.47050MR1428033
  9. [9] E.H. Lieb and Horng-Ter Yau, The stability and instability of relativistic matter. Commun. Math. Phys., Vol. 118, 1988, pp. 177-213. Zbl0686.35099MR956165
  10. [10] F.W.J. Olver, Bessel functions of integer order. In Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chapter 9, pp. 355-433. Dover Publications, New York, 5 edition, 1968. MR208797
  11. [11] A. Persson, Bounds for the discrete spectrum of a semi-bounded Schrödinger operator. Math. Scand., Vol. 8, pp. 143-153, 1960. Zbl0145.14901MR133586
  12. [12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, volume 4: Analysis of Operators. Academic Press, New York, 1 edition, 1978. Zbl0401.47001
  13. [13] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, New Jersey, 1 edition, 1971. Zbl0232.47053MR455975
  14. [ 14] B. Simon, Trace Ideals and Their Applications. Number 35 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1979. Zbl0423.47001MR541149
  15. [15] W. Thirring, Lehrbuch der Mathematischen Physik 3: Quantenmechanik von Atomen und Molekülen. Springer-Verlag, Wien, New York, 1 edition, 1979. Zbl0408.46054MR537034
  16. [16] C. Van Winter, Theory of finite systems of particles I. the Green function. Mat. Fys. Dan. Vid. Selsk., Vol. 2(8), 1964, pp. 1-60. Zbl0122.22403MR201168
  17. [17] S.A. Vugalter and G.M. Zhislin, On the finiteness of discrete spectrum in the n-particle problem. Rep. Math. Phys., Vol. 19(1), February 1984, pp. 39-90. Zbl0581.46063MR740347
  18. [18] G.M. Zislin, A study of the spectrum of the Schrödinger operator for a system of several particles. Trudy Moskov. Mat. Obsc., Vol. 9, 1960, pp. 81-120. MR126729
  19. [19] G.M. Zislin, Spectrum of differential operators of quantum-mechanical many-particle systems in spaces of functions of a given symmetry. Mathematics of the USSR-Izvestija, Vol. 3(3), 1969, pp. 559-616. Zbl0205.14503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.