Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics

M. Thieullen; J. C. Zambrini

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 3, page 297-338
  • ISSN: 0246-0211

How to cite

top

Thieullen, M., and Zambrini, J. C.. "Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics." Annales de l'I.H.P. Physique théorique 67.3 (1997): 297-338. <http://eudml.org/doc/76771>.

@article{Thieullen1997,
author = {Thieullen, M., Zambrini, J. C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lagrangian mechanics; Feynman's path integral; quantum mechanics; symmetries in regular quantum mechanics},
language = {eng},
number = {3},
pages = {297-338},
publisher = {Gauthier-Villars},
title = {Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics},
url = {http://eudml.org/doc/76771},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Thieullen, M.
AU - Zambrini, J. C.
TI - Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 3
SP - 297
EP - 338
LA - eng
KW - Lagrangian mechanics; Feynman's path integral; quantum mechanics; symmetries in regular quantum mechanics
UR - http://eudml.org/doc/76771
ER -

References

top
  1. [1] V. Arnold, Méthodes mathématiques de la mécanique classique, Ed. Mir, Moscou, 1976. Zbl0385.70001MR474391
  2. [2] V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Commande Optimale, Ed. Mir, Moscou, 1982. MR728225
  3. [3] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and path integrals, Mc Graw - Hill, N. Y., 1965. Zbl0176.54902
  4. [4] B. Simon, Functional Integration and Quantum Physics, Acad. Press, N. Y., 1979. Zbl0434.28013MR544188
  5. [5] N. Ikeda and S. Watanabe, Stochastic Differential equations and Diffusion Processes, 2nd ed., North Holland, Amsterdam, 1989. Zbl0684.60040MR1011252
  6. [6] M. Kac, On some connections between probability theory and differential and integral equations, Proc. of the 2nd, Berkeley Symp. on Prob. and Statistics, J. Newman Ed., Univ. of California Press, Berkeley, 1951. Zbl0045.07002MR45333
  7. [7] R.H. Cameron, J. Math. Physics, Vol. 39, 1960, p. 126. Zbl0096.06901
  8. [8] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris, 1922. MR355764
  9. [9] a) J.C. Zambrini, J. Math. Physics, Vol. 27, 1986, p. 2307. b) S. Albeverio, K. Yasue and J.C. Zambrini, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1989, p. 259. MR854761
  10. [10] E. Nelson, Quantum fluctuations, Princeton Series in Physics, P. U. Press, 1985. Zbl0563.60001MR783254
  11. [11] J.C. Zambrini, An alternative starting point for Euclidean field theory: Euclidean Quantum Mechanics, IXth International Congress of Mathematical Physics, Swansea (U.K.), Adam Hilger, N. Y., 1989, p. 260. MR1033772
  12. [12] A.B. Cruzeiro and J.C. Zambrini, Malliavin Calculus and Euclidean Quantum Mechanics. I. Functional Calculus, J. of Funct. Anal., Vol. 96, 1991, 1, p. 62. Zbl0733.35093MR1093507
  13. [13] P. Ramond, Field Theory. A modern primer, Benjamin Cummings Publ., Reading, Mass., 1981. MR602697
  14. [14] a) M.G. Crandall and P.L. Lions, Trans. Amer. M. S., No. 277, 1984, p. 1. b) W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993. MR690039
  15. [15] S. Weinberg, Annals of Physics, Vol. 194, 1989, p. 336. MR1015798
  16. [16] T. Kolsrud and J.C. Zambrini, The mathematical framework of Euclidean Quantum Mechanics. An outline in "Stochastic Analysis and Applications", Ed. A. B. Cruzeiro and J. C. Zambrini, No. 26, 1991, Birkhäuser, Boston. Zbl0784.60106MR1168072
  17. [17] A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag, 1989. Zbl0824.00008
  18. [18] E. Nelson, Dynamical Theories of Brownian Motion, Princeton Univ. Press, N. J., 1967. Zbl0165.58502MR214150
  19. [19] a) I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, N.J., 1963. b) W. Dittrich and M. Reuter, Classical and Quantum Dynamics, Springer-Verlag, 1994. Zbl0127.05402MR160139
  20. [20] a) W. MILLER Jr, Symmetry groups and their applications, Academic Press, N. Y., 1972. b) P.J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, N. Y., 1986. Zbl0306.22001MR338286
  21. [21] J. Doob, Bull. Soc. Math. de France, Vol. 85, 1957, p. 431. Zbl0097.34004MR109961
  22. [22] a) B. Djehiche, J. of Math. Phys., Vol. 33, 1992, No. 9, p. 3050. b) B. Djehiche, Potential Analysis, Vol. 2, p. 349, 1993. Zbl0762.60100
  23. [23] B. Djehiche and T. Kolsrud, Canonical transformations for diffusions, C.R. Acad. Sc. Paris, T. 321, Série I, 1995, pp. 339-344. Zbl0836.60084MR1346139
  24. [24] P.L. Lions, Act. Math., Vol. 161, 1988, p. 243. Zbl0757.93082
  25. [25] M. Thieullen and J.C. Zambrini, Symmetries in the Stochastic Calculus of Variations, to appear in Prob. Theory Related Fields. Zbl0868.60064MR1440139
  26. [26] a) E. Schrödinger, Ann. Inst. H. Poincaré, Vol. 2, 1932, p. 269. b) S. Bernstein, Sur les liaisons entre les grandeurs aléatoires, Mathematikerkongr, Zurich, Band 1, 1932. c) B. Jamison and Z. Wahrscheinlich, Gebiete, Vol. 30, 1974, p. 65. Zbl0007.02104MR1508000
  27. [27] M. Thieullen, Prob. Theory Related Fields, No. 97, 1993, p. 231. MR1240725
  28. [28] P. Malliavin, Stochastic calculus of variations and hypo-elliptic operators, Proc. Int. Symp. SDE Kyoto, 1976, 1978, Kinokuniya, Tokyo. Zbl0411.60060
  29. [29] E.B. Dynkin, Markov processes, Springer-Verlag, Berlin, 1965. Zbl0132.37901
  30. [30] A.B. Cruzeiro and J.C. Zambrini, Malliavin Calculus and Euclidean Quantum Mechanics, II, J. of Funct. Analysis, Vol. 130, No. 2, 1995, p. 450. Zbl0821.60060MR1335388
  31. [31] J.C. Zambrini, From Quantum Physics to Probability Theory and back, in "Chaos - the interplay between Stochastic and Deterministic behaviour", Springer lecture Notes in Physics, No. 457, GARBACZEWSKI et al., eds., Springer, Berlin, 1995. Zbl0839.60090MR1452626
  32. [32] J.C. Zambrini, Calculus of Variations and Quantum Probability in Lect. Notes in Control and Info., 1988, No. 121, p. 173, N. Y. MR1231121
  33. [33] A.J. Krener, Reciprocal diffusions in flat space, Prob. Theory Related fields, No. 107, 1997, p. 243. Zbl0868.60049MR1431221
  34. [34] B.C. Levy and A.J. Krener, Stochastic mechanics of reciprocal diffusions, J. Math. Physics, Vol. 37, 1996, p. 769. Zbl0869.60090MR1371041
  35. [35] N.V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Reidel, Dodrecht, 1987. Zbl0619.35004
  36. [36] S. Albeverio, J. Rezende and J.C. Zambrini, Probability and quantum symmetries, II. The Theorem of Noether in quantum mechanics. Zbl1112.81072
  37. [37] T. Misawa, Conserved quantities and symmetry for stochastic dynamical systems., Phys. Letters A, 1994, No. 195, p. 185. Zbl0941.34512MR1306235
  38. [38] P. Malliavin, Stochastic analysis, Grund. der Math. Wiss., Vol. 313, Springer, 1997. Zbl0878.60001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.