Statistical independence of operator algebras

Jan Hamhalter

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 4, page 447-462
  • ISSN: 0246-0211

How to cite

top

Hamhalter, Jan. "Statistical independence of operator algebras." Annales de l'I.H.P. Physique théorique 67.4 (1997): 447-462. <http://eudml.org/doc/76776>.

@article{Hamhalter1997,
author = {Hamhalter, Jan},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {statistical independence of -algebras; state; logical independence; independence in the sense of Schlieder; independence of commuting algebras; centers; Jordan-Banach algebras},
language = {eng},
number = {4},
pages = {447-462},
publisher = {Gauthier-Villars},
title = {Statistical independence of operator algebras},
url = {http://eudml.org/doc/76776},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Hamhalter, Jan
TI - Statistical independence of operator algebras
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 4
SP - 447
EP - 462
LA - eng
KW - statistical independence of -algebras; state; logical independence; independence in the sense of Schlieder; independence of commuting algebras; centers; Jordan-Banach algebras
UR - http://eudml.org/doc/76776
ER -

References

top
  1. [1] H. Araki, Local quantum theory-I, in Local Quantum Theory, ed. R.Jost, Academic Press, New York, 1969, pp. 65-95. 
  2. [2] H. Baumgãrtel, Operatoralgebraic Methods in Quantum Field Theory, Akademie Verlag, Berlin, 1995. Zbl0839.46063MR1353908
  3. [3] O. Bratteli and G.A. Elliott, An introduction to fractal C*-algebras, Operator algebras and topology. Proceeding of the OATE 2 conference, Bucharest, Romania, 1989. Pitman Res. Notes Math. Ser. 270, pp. 1-29, 1992. Zbl0801.46064MR1189177
  4. [4] L.G. Brown and G.K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal., Vol. 99, 1991, No 1, pp. 131-149. Zbl0776.46026MR1120918
  5. [5] R. Haag and D.KASTLER, An algebraic approach to quantum field theory, Journal of Mathematical Physics, Vol. 5, 1964, Num. 7, pp. 848-861. Zbl0139.46003MR165864
  6. [6] H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Pitman Publishing, 1984. Zbl0561.46031MR755003
  7. [7] S.S. Horudzij, Introduction to Algebraic Quantum Field Theory, Moskow, Nauka, 1989, (Russian). 
  8. [8] F.B. Jamjoom, On the tensor products of JC-algebras and JW-algebras, Ph.D. Thesis, University of Reading, 1990. 
  9. [9] J. Jauch, Foundations of Quantum Mechanics, Reeading, Mass., Addison-Wesley, 1968. Zbl0166.23301MR218062
  10. [10] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I, II, Academic Press, 1983. Zbl0518.46046MR719020
  11. [11] K. Kraus, General quantum field theories and strict locality, Zeitschrift für Physik, Vol. 181, 1964, pp. 1-12. Zbl0149.23804MR182341
  12. [12] G.W. Mackey, The Mathematical Foundations of Quantum Mechanics, New York, Benjamin, 1963. Zbl0114.44002
  13. [13] F.J. Murray and J. von Neumann, On rings of operators, Ann. Math., Vol. 37, pp. 116-229. Zbl0014.16101MR1503275JFM62.0449.03
  14. [14] G.K. Pedersen, C*-Algebras and their Authomorphism Groups, Academic Press, 1979. MR548006
  15. [15] G.K. Pedersen, The linear span of projections in simple C*-algebras, J. Operator Theory, Vol. 4, 1980, pp. 289-296. Zbl0495.46040MR595417
  16. [16] G.A. Raggio, States and composite systems in W*-algebraic quantum mechanics, Ph. D. Thesis, ETH, Zürich1984. 
  17. [17] M. Redei, Logical independence in quantum logic, Foundations of Physics, Vol. 25, 1995, pp. 411-415. MR1327850
  18. [18] M. Redei, Logically independent von Neumann lattices, Int. J. Theor. Phys., Vol. 34, No 8, pp. 1711-1718, 1995. Zbl0839.03043MR1353716
  19. [19] H. Roose, Independence of local algebras in quantum field theory, Commun. Math. Phys., Vol. 16, 1970, pp. 238-246. Zbl0197.26303MR266539
  20. [20] S. Schlieder, Einige Bemerkungen über projectionsoperatoren, Comm. Math. Phys., Vol. 13, 1969, pp. 216-225. Zbl0179.58001MR250617
  21. [21] I.E. Segal, Postulates for general quantum mechanics, Ann. Math., Vol. 48, 1947, pp. 930-948. Zbl0034.06602MR22652
  22. [22] S.J. Summers, Bell's inequalities and quantum field theory, Quantum probability and applications, V, (Heidelberg1988), Lecture Notes in Mathematics, Vol. 1442, pp. 393-413. Zbl0708.60097MR1091323
  23. [23] S.J. Summers, On the independence of local algebras in quantum field theory, Reviews in Mathematical Physics Vol.2, 1990, pp. 201-247. Zbl0743.46079MR1090281

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.