Statistical independence of operator algebras
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 67, Issue: 4, page 447-462
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHamhalter, Jan. "Statistical independence of operator algebras." Annales de l'I.H.P. Physique théorique 67.4 (1997): 447-462. <http://eudml.org/doc/76776>.
@article{Hamhalter1997,
author = {Hamhalter, Jan},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {statistical independence of -algebras; state; logical independence; independence in the sense of Schlieder; independence of commuting algebras; centers; Jordan-Banach algebras},
language = {eng},
number = {4},
pages = {447-462},
publisher = {Gauthier-Villars},
title = {Statistical independence of operator algebras},
url = {http://eudml.org/doc/76776},
volume = {67},
year = {1997},
}
TY - JOUR
AU - Hamhalter, Jan
TI - Statistical independence of operator algebras
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 4
SP - 447
EP - 462
LA - eng
KW - statistical independence of -algebras; state; logical independence; independence in the sense of Schlieder; independence of commuting algebras; centers; Jordan-Banach algebras
UR - http://eudml.org/doc/76776
ER -
References
top- [1] H. Araki, Local quantum theory-I, in Local Quantum Theory, ed. R.Jost, Academic Press, New York, 1969, pp. 65-95.
- [2] H. Baumgãrtel, Operatoralgebraic Methods in Quantum Field Theory, Akademie Verlag, Berlin, 1995. Zbl0839.46063MR1353908
- [3] O. Bratteli and G.A. Elliott, An introduction to fractal C*-algebras, Operator algebras and topology. Proceeding of the OATE 2 conference, Bucharest, Romania, 1989. Pitman Res. Notes Math. Ser. 270, pp. 1-29, 1992. Zbl0801.46064MR1189177
- [4] L.G. Brown and G.K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal., Vol. 99, 1991, No 1, pp. 131-149. Zbl0776.46026MR1120918
- [5] R. Haag and D.KASTLER, An algebraic approach to quantum field theory, Journal of Mathematical Physics, Vol. 5, 1964, Num. 7, pp. 848-861. Zbl0139.46003MR165864
- [6] H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Pitman Publishing, 1984. Zbl0561.46031MR755003
- [7] S.S. Horudzij, Introduction to Algebraic Quantum Field Theory, Moskow, Nauka, 1989, (Russian).
- [8] F.B. Jamjoom, On the tensor products of JC-algebras and JW-algebras, Ph.D. Thesis, University of Reading, 1990.
- [9] J. Jauch, Foundations of Quantum Mechanics, Reeading, Mass., Addison-Wesley, 1968. Zbl0166.23301MR218062
- [10] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I, II, Academic Press, 1983. Zbl0518.46046MR719020
- [11] K. Kraus, General quantum field theories and strict locality, Zeitschrift für Physik, Vol. 181, 1964, pp. 1-12. Zbl0149.23804MR182341
- [12] G.W. Mackey, The Mathematical Foundations of Quantum Mechanics, New York, Benjamin, 1963. Zbl0114.44002
- [13] F.J. Murray and J. von Neumann, On rings of operators, Ann. Math., Vol. 37, pp. 116-229. Zbl0014.16101MR1503275JFM62.0449.03
- [14] G.K. Pedersen, C*-Algebras and their Authomorphism Groups, Academic Press, 1979. MR548006
- [15] G.K. Pedersen, The linear span of projections in simple C*-algebras, J. Operator Theory, Vol. 4, 1980, pp. 289-296. Zbl0495.46040MR595417
- [16] G.A. Raggio, States and composite systems in W*-algebraic quantum mechanics, Ph. D. Thesis, ETH, Zürich1984.
- [17] M. Redei, Logical independence in quantum logic, Foundations of Physics, Vol. 25, 1995, pp. 411-415. MR1327850
- [18] M. Redei, Logically independent von Neumann lattices, Int. J. Theor. Phys., Vol. 34, No 8, pp. 1711-1718, 1995. Zbl0839.03043MR1353716
- [19] H. Roose, Independence of local algebras in quantum field theory, Commun. Math. Phys., Vol. 16, 1970, pp. 238-246. Zbl0197.26303MR266539
- [20] S. Schlieder, Einige Bemerkungen über projectionsoperatoren, Comm. Math. Phys., Vol. 13, 1969, pp. 216-225. Zbl0179.58001MR250617
- [21] I.E. Segal, Postulates for general quantum mechanics, Ann. Math., Vol. 48, 1947, pp. 930-948. Zbl0034.06602MR22652
- [22] S.J. Summers, Bell's inequalities and quantum field theory, Quantum probability and applications, V, (Heidelberg1988), Lecture Notes in Mathematics, Vol. 1442, pp. 393-413. Zbl0708.60097MR1091323
- [23] S.J. Summers, On the independence of local algebras in quantum field theory, Reviews in Mathematical Physics Vol.2, 1990, pp. 201-247. Zbl0743.46079MR1090281
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.