Solitary waves for Maxwell-Dirac and Coulomb-Dirac models

Simonetta Abenda

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 2, page 229-244
  • ISSN: 0246-0211

How to cite

top

Abenda, Simonetta. "Solitary waves for Maxwell-Dirac and Coulomb-Dirac models." Annales de l'I.H.P. Physique théorique 68.2 (1998): 229-244. <http://eudml.org/doc/76784>.

@article{Abenda1998,
author = {Abenda, Simonetta},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Dirac-Maxwell equation; stationary solutions},
language = {eng},
number = {2},
pages = {229-244},
publisher = {Gauthier-Villars},
title = {Solitary waves for Maxwell-Dirac and Coulomb-Dirac models},
url = {http://eudml.org/doc/76784},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Abenda, Simonetta
TI - Solitary waves for Maxwell-Dirac and Coulomb-Dirac models
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 2
SP - 229
EP - 244
LA - eng
KW - Dirac-Maxwell equation; stationary solutions
UR - http://eudml.org/doc/76784
ER -

References

top
  1. [1] A. Ambrosetti and P.H. Rabinowitz, Dual Variational methods in critical points theory and applications inJ. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
  2. [2] M. Balabane, T. Cazenave and L. Vazquez, Existence of standing waves for Dirac fields with singular nonlinearities. Comm. Math. Phys., Vol. 133, 1990, pp. 53-74. Zbl0721.35065MR1071235
  3. [3] M. Balabane, T. Cazenave, A. Douady and F. Merle, Existence of excited states for a nonlinear Dirac field., Comm. Math. Phys., 119, 1988, pp. 153-176. Zbl0696.35158MR968485
  4. [4] M. Beals and M. Bezard, Solutions faibles sous des conditions d'énergie pour des équations de champ. 
  5. [5] V. Benci and P.H. Rabinowitz, Critical point theorems for indefinite functionals. Inv. Math., Vol. 52, 1979, pp. 336-352. Zbl0465.49006MR537061
  6. [6] J.D. Bjorken and S.D. Drell, Relativistic quantum fields. McGraw-Hill, 1965. Zbl0184.54201MR187642
  7. [7] T. Cazenave, On the existence of stationary states for classical nonlinear Dirac fields. In Hyperbolic systems and Mathematical Physics. Textos e Notas, Vol. 4, CMAF, Lisbonne, 1989. 
  8. [8] T. Cazenave and L. Vazquez, Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys., Vol. 105, 1986, pp. 35-47. Zbl0596.35117MR847126
  9. [9] G. Cerami, Un criterio di esistenza per i punti critici su varietá illimitateIst. Lomb. (Rend. Sc.), Vol. A 112, 1978, pp. 332-336. Zbl0436.58006
  10. [10] J. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell–Dirac system in one space dimension. J. Funct. Anal., Vol. 13, 1973, pp. 173-184. Zbl0264.35058MR368640
  11. [11] J. Chadam and R. Glassey, On the Maxwell-Dirac equations with zero magnetic field and their solutions in two space dimension. J. Math. Anal. Appl., Vol. 53, 1976, pp. 495-507. Zbl0324.35076MR413833
  12. [12] Y. Choquet-Bruhat, Solutions globales des équations de Maxwell-Dirac-Klein-Gordon (masses nulles). C.R. Acad. Sci. Paris, Série I, Vol. 292, 1981, pp. 153-158. Zbl0498.35053MR610307
  13. [13] M.J. Esteban, V. Georgev and E. Séré, Stationary solutions of the Maxwell-Dirac and Klein-Gordon-Dirac equations. To appear, 1995. MR1344729
  14. [14] M.J. Esteban and E. Séré, Existence de solutions stationnaires pour l'équation de Dirac non-linéaire et le système de Dirac-Poisson. To appear in C. R. Acad. Sci., Série I, 1994. Zbl0815.35103MR1309103
  15. [ 15] M.J. Esteban and E. Séré, Stationary states of the nonlinear Dirac equation : a variational approach. Comm. Math. Phys., Vol. 171, 1995, pp. 323-348. Zbl0843.35114MR1344729
  16. [16] M. Flato, J. Simon and E. Taflin, On the global solutions of the Maxwell-Dirac equations. Comm. Math. Physics, Vol. 113, 1987, pp. 21-49. Zbl0641.35064MR904136
  17. [17] A. Garrett Lisi, A solitary wave solution of the Maxwell-Dirac equations , University of California at San Diego, preprint 1995. Zbl0868.35121MR1364144
  18. [18] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations. Indiana Univ. Math. J., Vol. 40(3), 1991, pp. 845-883. Zbl0754.35171MR1129332
  19. [ 19] W.T. Grandy Jr., Relativistic Quantum Mechanics of Leptons and Fields. Kluwer Acad. Publisher, Fund. Theories of Physics, Vol. 41. 
  20. [20] L. Gross, The Cauchy problem for the coupled Maxwell and Dirac equations. Comm. Pure Appl. Math., Vol. 19, 1966, pp. 1-5. Zbl0137.32401MR190520
  21. [21 ] H. Hofer and Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., Vol. 288 (1990, pp. 483-503. Zbl0702.34039MR1079873
  22. [22] P.-L. Lions, The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Anal. non-linéaire, Ann. IHP, Vol. 1, 1984, pp. 109-145. Part. II: Anal. non-linéaire, Ann. IHP, Vol. 1, 1984, pp. 223-283. Zbl0541.49009
  23. [23] F. Merle, Existence of stationary states for nonlinear Dirac equations. J. Diff. Eq., Vol. 74(1), 1988, pp. 50-68. Zbl0696.35154MR949625
  24. [24] A.F. Rañada, Classical nonlinear Dirac field models of extended particles. In Quantum theory, groups, fields and particles (editor A.O. Barut). Reidel, Amsterdam, 1982. 
  25. [25] E. Séré, Homoclinic orbits on compact hypersurfaces in R2N, of restricted contact type. Comm. Math. Phys., Vol. 172, 1995, pp. 293-313. Zbl0840.34046MR1350410
  26. [26] M. Soler, Phys. Rev. D1, 1970, pp. 2766-2769. 
  27. [27] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system : convergence of subharmonics. Journ. Diff. Eq., Vol. 94, 1991, pp. 315-339. Zbl0787.34041MR1137618
  28. [28] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation, 1994 to appear. Zbl0864.35036MR1410836
  29. [29] M. Wakano, Intensely localized solutions of the classical Dirac-Maxwell field equations. Progr. Theor. Phys., Vol. 35(6), 1966, pp. 1117-1141. 
  30. [30] M. Willem, Minimax theorems, to appear. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.