Asymptotic observables for N-body Stark hamiltonians

Tadayoshi Adachi

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 3, page 247-283
  • ISSN: 0246-0211

How to cite

top

Adachi, Tadayoshi. "Asymptotic observables for N-body Stark hamiltonians." Annales de l'I.H.P. Physique théorique 68.3 (1998): 247-283. <http://eudml.org/doc/76785>.

@article{Adachi1998,
author = {Adachi, Tadayoshi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operator; long time evolution; quantum particles moving in a constant electric field; asymptotic observables; asymptotic velocity; asymptotic energy},
language = {eng},
number = {3},
pages = {247-283},
publisher = {Gauthier-Villars},
title = {Asymptotic observables for N-body Stark hamiltonians},
url = {http://eudml.org/doc/76785},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Adachi, Tadayoshi
TI - Asymptotic observables for N-body Stark hamiltonians
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 3
SP - 247
EP - 283
LA - eng
KW - Schrödinger operator; long time evolution; quantum particles moving in a constant electric field; asymptotic observables; asymptotic velocity; asymptotic energy
UR - http://eudml.org/doc/76785
ER -

References

top
  1. [A1] T. Adachi, Long-range scattering for three-body Stark Hamiltonians, J. Math. Phys., Vol. 35, 1994, pp. 5547-5571. Zbl0819.35106MR1299904
  2. [A2] T. Adachi, Propagation estimates for N-body Stark Hamiltonians, Ann. l'Inst. H. Poincaré - Phys. Theor., Vol. 62, 1995, pp. 409-428. Zbl0843.35087MR1343785
  3. [AT1] Adachi and H. Tamura, Asymptotic Completeness for Long-Range Many-Particle Systems with Stark Effect, J. Math. Sci., The Univ. of Tokyo, Vol. 2, 1995, pp. 77-116. Zbl0843.35086MR1348023
  4. [AT2] Adachi. T. and H. Tamura, Asymptotic Completeness for Long-Range Many-Particle Systems with Stark Effect, II, Commun. Math. Phys., Vol. 174, 1996, pp. 537-559. Zbl0849.35112MR1370080
  5. [AH] J.E. Avron and I.W. Herbst, Spectral and scattering theory of Schrödinger operators related to the Stark effectCommun. Math. Phys., Vol. 52, 1977, pp. 239-254. Zbl0351.47007MR468862
  6. [D1] J. Dereziński, Algebraic approach to the N-body long-range scattering, Rev. Math. Phys., Vol. 3, 1991, pp. 1-62. Zbl0726.34071MR1110555
  7. [D2] J. Dereziński, Asymptotic completeness of long-range N-body quantum systems, Ann. of Math., Vol. 138, 1993, pp. 427-476. Zbl0844.47005MR1240577
  8. [E] V. Enss, Long-range scattering of two– and three-body systems, Proceedings of the Conference Equations aux dérivées partielles Saint Jean de Monts, Ecole Polytechnique, 1989, pp. 1-31. Zbl0734.35069MR1030815
  9. [G] C. Gérard, Asymptotic completeness for 3-particle long-range systems, Invent. Math., Vol. 114, 1993, pp. 333-397. Zbl0812.70006MR1240642
  10. [Gr1] G.M. Graf, Asymptotic completeness for N-body short-range quantum systems: a new proof, Commun. Math. Phys., Vol. 132 , 1990, pp. 73-101. Zbl0726.35096MR1069201
  11. [Gr2] G.M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta, Vol. 64, 1991, pp. 1167-1174. MR1149436
  12. [HeSj] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Lecture Notes in Physics, Springer-Verlag, Vol. 345, 1989, pp. 118-197. Zbl0699.35189MR1037319
  13. [H] I.W. Herbst, Temporal Exponential Decay for the Stark Effect in Atoms, J. Func. Anal., Vol. 48, 1982, pp. 224-251. Zbl0503.35029MR674059
  14. [HMS1] I.W. Herbst, J.S. Møller and E. Skibsted, Spectral analysis of N-body Stark Hamiltonians, Commun. Math. Phys., Vol. 174, 1995, pp. 261-294. Zbl0846.35095MR1362166
  15. [HMS2] I.W. Herbst, J.S. Møller and E. Skibsted, Asymptotic completeness for N-body Stark Hamiltonians, Commun. Math. Phys., Vol. 174, 1996, pp. 509-535. Zbl0846.35096MR1370079
  16. [JO] A. Jensen and T. Ozawa, Existence and non-existence results for wave operators for perturbations of the Laplacian, Rev. Math. Phys., Vol. 5, 1993, pp. 601-629. Zbl0831.35145MR1240736
  17. [JY] A. Jensen and K. Yajima, On the long-range scattering for Stark Hamiltonians, J. reine angew. Math. , Vol. 420, 1991, pp. 179-193. Zbl0736.35077MR1124570
  18. [SS1] I.M. Sigal and A. Soffer, Asymptotic completeness for N ≤ 4 particle systems with the Coulomb-type interactions, Duke Math. J., Vol. 71, 1993, pp. 243-298. Zbl0853.70010MR1230292
  19. [SS2] I.M. Sigal and A. Soffer, Asymptotic completeness of N-particle long-range scattering, J. Amer. Math. Soc., Vol. 7, 1994, pp. 307-334. Zbl0811.35091MR1233895
  20. [W1] D. White, The Stark effect and long-range scattering in two Hilbert spaces, Indiana Univ. Math. J., Vol. 39, 1990, pp. 517-546. Zbl0695.35144MR1089052
  21. [W2] D. White, Modified wave operators and Stark Hamiltonians, Duke Math. J., Vol. 68, 1992, pp. 83-100. Zbl0766.35033MR1185819
  22. [Z] L. Zielinski, A proof of asymptotic completeness for N-body Schrödinger operators, Commun. Partial Differ. Eqs., Vol. 19, 1994, pp. 455-522. Zbl0812.35118MR1265807

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.