Small perturbations of a discrete twist map

Xu-Sheng Zhang; Franco Vivaldi

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 4, page 507-523
  • ISSN: 0246-0211

How to cite

top

Zhang, Xu-Sheng, and Vivaldi, Franco. "Small perturbations of a discrete twist map." Annales de l'I.H.P. Physique théorique 68.4 (1998): 507-523. <http://eudml.org/doc/76794>.

@article{Zhang1998,
author = {Zhang, Xu-Sheng, Vivaldi, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {invertible twist map; perturbation theory; periodic orbit; rotation number; stability},
language = {eng},
number = {4},
pages = {507-523},
publisher = {Gauthier-Villars},
title = {Small perturbations of a discrete twist map},
url = {http://eudml.org/doc/76794},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Zhang, Xu-Sheng
AU - Vivaldi, Franco
TI - Small perturbations of a discrete twist map
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 4
SP - 507
EP - 523
LA - eng
KW - invertible twist map; perturbation theory; periodic orbit; rotation number; stability
UR - http://eudml.org/doc/76794
ER -

References

top
  1. [1] M. Bartuccelli and F. Vivaldi, Ideal orbits of toral automorphisms, Physica D, Vol. 39, 1989, pp. 194-204. Zbl0694.58033MR1028715
  2. [2] M. Blank, Pathologies generated by round-off in dynamical systems, Physica D, Vol. 78, 1994, pp. 93-114. Zbl0816.58026MR1299502
  3. [3] C. Beck and G. Roepstoff, Effects of phase space discretization on the long-time behavior of dynamical systems, Physica D, Vol. 25, 1987, pp. 173-180. Zbl0617.65066MR887462
  4. [4] B.V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Reports, Vol. 52 (5), 1979, pp. 263-379. MR536429
  5. [5] B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Dynamical stochasticity in classical and quantum mechanics, Soviet Scientific Reviews C, Vol. 2, Gordon and Breach, New York, 1981, pp. 209-267. Zbl0534.60096MR659270
  6. [6] M. Degli Esposti and S. Isola, Distribution of closed orbits for linear automorphisms of tori, Nonlinearity, Vol. 8, 1995, pp. 827-842. Zbl0843.58099MR1355045
  7. [7] D.J.D. Earn and S. Tremaine, Exact numerical studies of hamiltonian maps: iterating without roundoff errors, Physica D, Vol. 56, 1992, pp. 1-22. Zbl0759.58015MR1162267
  8. [8] C.F.F. Karney, Long time correlations in the stochastic regime, Physica D, Vol. 8, 1983, pp. 360-380. MR719633
  9. [9] K. Kaneko, Symplectic cellular automata, Phys. Lett. A, Vol. 129, 1988, pp. 9-16. MR943775
  10. [10] V. Kozyakin, On finiteness of trajectories for one mapping associated with quasi-inversion of rotation mapping on integer planar lattice, preprint, Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, 1997. [kozyakin@ippi.ac.msk.su]. 
  11. [11] J.H. Lowenstein, S. Hatjispyros and F. Vivaldi, Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off, Chaos, Vol. 7, 1997, pp. 49-66. Zbl0933.37059MR1439807
  12. [12] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Vol. 62, 1940, pp. 1-42. Zbl0022.34003MR745JFM66.0188.03
  13. [13] D. Nucinkis, D.K. Arrowsmith and F. Vivaldi, Some statistical properties of discretized quasiperiodic orbits, Nonlinearity, Vol. 10, 1997, pp. 1643-1674. Zbl0908.58050MR1483559
  14. [14] I.C. Percival and F. Vivaldi, Arithmetical properties of strongly chaotic motions, Physica D, Vol. 25, 1987, pp. 105-130. Zbl0616.58039MR887460
  15. [15] F. Rannou, Numerical studies of discrete plane area-preserving mappings, Astron. Astrophys., Vol. 31, 1974, pp. 289-301. Zbl0283.58006
  16. [16] C. Scovel, On symplectic lattice maps, Phys. Lett. A, Vol. 159, 1991, pp. 396-400. MR1134049
  17. [17] F. Vivaldi, Periodicity and transport from round-off errors, Experimental Mathematics, Vol. 3, 1994, pp. 303-315. Zbl0832.58017MR1341722
  18. [18] I. Vladimirov, Discretization of dynamical systems, preprint, Deakin University, Geelong, Victoria, 1996 [I. Vladimirov@mailbox.uq.edu.au]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.