Small perturbations of a discrete twist map
Xu-Sheng Zhang; Franco Vivaldi
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 68, Issue: 4, page 507-523
- ISSN: 0246-0211
Access Full Article
topHow to cite
topZhang, Xu-Sheng, and Vivaldi, Franco. "Small perturbations of a discrete twist map." Annales de l'I.H.P. Physique théorique 68.4 (1998): 507-523. <http://eudml.org/doc/76794>.
@article{Zhang1998,
author = {Zhang, Xu-Sheng, Vivaldi, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {invertible twist map; perturbation theory; periodic orbit; rotation number; stability},
language = {eng},
number = {4},
pages = {507-523},
publisher = {Gauthier-Villars},
title = {Small perturbations of a discrete twist map},
url = {http://eudml.org/doc/76794},
volume = {68},
year = {1998},
}
TY - JOUR
AU - Zhang, Xu-Sheng
AU - Vivaldi, Franco
TI - Small perturbations of a discrete twist map
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 4
SP - 507
EP - 523
LA - eng
KW - invertible twist map; perturbation theory; periodic orbit; rotation number; stability
UR - http://eudml.org/doc/76794
ER -
References
top- [1] M. Bartuccelli and F. Vivaldi, Ideal orbits of toral automorphisms, Physica D, Vol. 39, 1989, pp. 194-204. Zbl0694.58033MR1028715
- [2] M. Blank, Pathologies generated by round-off in dynamical systems, Physica D, Vol. 78, 1994, pp. 93-114. Zbl0816.58026MR1299502
- [3] C. Beck and G. Roepstoff, Effects of phase space discretization on the long-time behavior of dynamical systems, Physica D, Vol. 25, 1987, pp. 173-180. Zbl0617.65066MR887462
- [4] B.V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Reports, Vol. 52 (5), 1979, pp. 263-379. MR536429
- [5] B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Dynamical stochasticity in classical and quantum mechanics, Soviet Scientific Reviews C, Vol. 2, Gordon and Breach, New York, 1981, pp. 209-267. Zbl0534.60096MR659270
- [6] M. Degli Esposti and S. Isola, Distribution of closed orbits for linear automorphisms of tori, Nonlinearity, Vol. 8, 1995, pp. 827-842. Zbl0843.58099MR1355045
- [7] D.J.D. Earn and S. Tremaine, Exact numerical studies of hamiltonian maps: iterating without roundoff errors, Physica D, Vol. 56, 1992, pp. 1-22. Zbl0759.58015MR1162267
- [8] C.F.F. Karney, Long time correlations in the stochastic regime, Physica D, Vol. 8, 1983, pp. 360-380. MR719633
- [9] K. Kaneko, Symplectic cellular automata, Phys. Lett. A, Vol. 129, 1988, pp. 9-16. MR943775
- [10] V. Kozyakin, On finiteness of trajectories for one mapping associated with quasi-inversion of rotation mapping on integer planar lattice, preprint, Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, 1997. [kozyakin@ippi.ac.msk.su].
- [11] J.H. Lowenstein, S. Hatjispyros and F. Vivaldi, Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off, Chaos, Vol. 7, 1997, pp. 49-66. Zbl0933.37059MR1439807
- [12] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Vol. 62, 1940, pp. 1-42. Zbl0022.34003MR745JFM66.0188.03
- [13] D. Nucinkis, D.K. Arrowsmith and F. Vivaldi, Some statistical properties of discretized quasiperiodic orbits, Nonlinearity, Vol. 10, 1997, pp. 1643-1674. Zbl0908.58050MR1483559
- [14] I.C. Percival and F. Vivaldi, Arithmetical properties of strongly chaotic motions, Physica D, Vol. 25, 1987, pp. 105-130. Zbl0616.58039MR887460
- [15] F. Rannou, Numerical studies of discrete plane area-preserving mappings, Astron. Astrophys., Vol. 31, 1974, pp. 289-301. Zbl0283.58006
- [16] C. Scovel, On symplectic lattice maps, Phys. Lett. A, Vol. 159, 1991, pp. 396-400. MR1134049
- [17] F. Vivaldi, Periodicity and transport from round-off errors, Experimental Mathematics, Vol. 3, 1994, pp. 303-315. Zbl0832.58017MR1341722
- [18] I. Vladimirov, Discretization of dynamical systems, preprint, Deakin University, Geelong, Victoria, 1996 [I. Vladimirov@mailbox.uq.edu.au].
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.