Lagrangian and hamiltonian aspects of Josephson type media

A. K. Prykarpatsky; J. A. Zagrodziński

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 5, page 497-524
  • ISSN: 0246-0211

How to cite

top

Prykarpatsky, A. K., and Zagrodziński, J. A.. "Lagrangian and hamiltonian aspects of Josephson type media." Annales de l'I.H.P. Physique théorique 70.5 (1999): 497-524. <http://eudml.org/doc/76825>.

@article{Prykarpatsky1999,
author = {Prykarpatsky, A. K., Zagrodziński, J. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {reduction of Hamiltonian flow; degenerate Poisson structure; nondegenerate Poisson structure; Josephson media; gauge-type constraints; Marsden-Weinstein momentum map reduction; Abelian gauge group; Josephson-Vlasov kinetic type equations; canonical Lie-Poisson bracket},
language = {eng},
number = {5},
pages = {497-524},
publisher = {Gauthier-Villars},
title = {Lagrangian and hamiltonian aspects of Josephson type media},
url = {http://eudml.org/doc/76825},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Prykarpatsky, A. K.
AU - Zagrodziński, J. A.
TI - Lagrangian and hamiltonian aspects of Josephson type media
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 5
SP - 497
EP - 524
LA - eng
KW - reduction of Hamiltonian flow; degenerate Poisson structure; nondegenerate Poisson structure; Josephson media; gauge-type constraints; Marsden-Weinstein momentum map reduction; Abelian gauge group; Josephson-Vlasov kinetic type equations; canonical Lie-Poisson bracket
UR - http://eudml.org/doc/76825
ER -

References

top
  1. [1] K.F. Nakajima and Y. Sawada, J. Appl. Phys.52 (1991) 2162. 
  2. [2] G. Filatrella and K. Wiesefeld, in: R.D. Parmentier and N.F. Pedersen (Eds.), Proc. Conf. Nonlinear Superconducting Devices and HTc Materials, Capri, World Scientific, 1995, p. 329. 
  3. [3] J. Zagrodzński, Phys. Rev. B53 (1995) 59. 
  4. [4] B. Horovitz, Phys. Rev. B51 (1995) 3989. 
  5. [5] M. Franz and S. Teitel, Physica B222 (1996) 287. 
  6. [6] M.Y. Choi, Phys. Rev. B50 (1994) 13875. 
  7. [7] T. Onogi, Physica B222 (1996) 391. 
  8. [8] W.E. Lawrence and S. Doniach, in: E. Kanda (Ed.), Proc. 12th Internat. Conf. on Low Temperature Physics, Kyoto, Keygaku, Tokyo, 1970, p. 361. 
  9. [9] J. Zagrodzinński, Phys. Scripta54 (1996) 24. MR1396272
  10. [10] J. Gibbons, D.D. Holm and B. Kupershmidt, Physica 6D (1983) 179. 
  11. [11] D.D. Holm and B. Kupershmidt, Phys. Rev. A36 (1987) 3947; also J. Math. Phys.29 (1988) 21. 
  12. [12] Pa.M. Dirac, Quantum Mechanics of Curved Subspace, Oxford, 1962. 
  13. [13] A.K. Prykarpatsky and I.V. Mykytiuk, Algebraic Aspects of Nonlinear Dynamical Systems on Manifolds, Nauk. Dumka, Kiev, 1991 (in Russian). Zbl0937.37055
  14. [14] A.K. Prykarpatsky, D. Blackmore, W. Stramp, Yu. Sydorenko and R. Samuliak, Cond. Matter. Phys.6 (1995) 72. 
  15. [15] A.K. Prykarpatsky, D. Blackmore, W. Stramp, Yu. Sydorenko and R. Samuliak, J. Math. Phys. (1996) will be published. 
  16. [16] R. Abraham and J. Marsden, Foundation of Mechanics, W.A. Benjamin, 1978. 
  17. [17] J. Marsden and A. Weinstein, Rept. on Math. Phys.5 (1974) 129. 
  18. [18] J. Marsden, Canad. Math. Bull.24 (1982) 129. MR663606
  19. [19] V. Guillemin and S. Sternberg,Ann. Phys.127 (1980) 220. Zbl0453.58015MR576424
  20. [20] V.I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts in Math., Vol. 60, Springer, New York, 1968. Zbl0386.70001MR997295

NotesEmbed ?

top

You must be logged in to post comments.