An operator-valued stochastic integral, III

D. Kannan

Annales de l'I.H.P. Probabilités et statistiques (1972)

  • Volume: 8, Issue: 3, page 217-228
  • ISSN: 0246-0203

How to cite

top

Kannan, D.. "An operator-valued stochastic integral, III." Annales de l'I.H.P. Probabilités et statistiques 8.3 (1972): 217-228. <http://eudml.org/doc/76956>.

@article{Kannan1972,
author = {Kannan, D.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {217-228},
publisher = {Gauthier-Villars},
title = {An operator-valued stochastic integral, III},
url = {http://eudml.org/doc/76956},
volume = {8},
year = {1972},
}

TY - JOUR
AU - Kannan, D.
TI - An operator-valued stochastic integral, III
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1972
PB - Gauthier-Villars
VL - 8
IS - 3
SP - 217
EP - 228
LA - eng
UR - http://eudml.org/doc/76956
ER -

References

top
  1. [1] P. Billingsley, Convergence of probability measures. John Wiley, New York, 1968. Zbl0172.21201MR233396
  2. [2] N. Dunford and J.T. Schwartz, Linear operators, Part II, Spectral theory. John Wiley (Interscience), New York, 1963. Zbl0128.34803MR1009163
  3. [3] B.V. Gnedenko and A.N. Kolnogorov, Limit distributions for sums of independent random variables. Addison-Wesley Publ. Co., Reading, Massachusetts, 1954. Zbl0056.36001MR62975
  4. [4] E. Hille and R.S. Phillips, Functional analysis and semi-groups. Amer. Math. Soc., Colloq. Publ., vol. 31, 1957. Zbl0078.10004MR89373
  5. [5] D. Kannan and A.T. Bharucha-Reid, Note on covariance operators of probability measures on a Hilbert space. Proc. Japan Acad., vol. 46, 1970, p. 124-129. Zbl0208.43501MR283838
  6. [6] D. Kannan and A.T. Bharucha-Reid, An operator-valued stochastic integral. Proc. Japan Acad., vol. 47, 1971, p. 472-476. Zbl0256.60029MR303604
  7. [7] D. Kannan, An operator-valued stochastic integral. II. Ann. Inst. Henri Poincaré, Sect. B, vol. 8, 1972, p. 9-32. Zbl0256.60030MR321176
  8. [8] R.G. Laha and E. Lukacs, On identically distributed stochastic integrals, Trans. III Prague conf. on Information Theory Statistical Decision Functions, Random Processes. Publishing House of Czechoslovak Acad. Sci., 1964, p. 467-474. Zbl0137.13205MR168011
  9. [9] E. Lukacs, Stochastic Convergence. D. C. Heath and Co., Massachusetts, 1968. Zbl0179.48003
  10. [10] K.R. Parthasarthy, Probability measures on metric spaces. Academic Press, New York, 1967. Zbl0153.19101
  11. [11] R. Schatten, Norm ideals of completely continuous operators. Springer-Verlag, Berlin, 1960. Zbl0090.09402MR119112
  12. [12] S.R.S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space. Sankhya, vol. 24, 1962, p. 213-238. Zbl0113.34101MR171305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.