Prediction sequences in smooth Banach spaces

M. M. Rao

Annales de l'I.H.P. Probabilités et statistiques (1972)

  • Volume: 8, Issue: 4, page 319-332
  • ISSN: 0246-0203

How to cite

top

Rao, M. M.. "Prediction sequences in smooth Banach spaces." Annales de l'I.H.P. Probabilités et statistiques 8.4 (1972): 319-332. <http://eudml.org/doc/76963>.

@article{Rao1972,
author = {Rao, M. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {319-332},
publisher = {Gauthier-Villars},
title = {Prediction sequences in smooth Banach spaces},
url = {http://eudml.org/doc/76963},
volume = {8},
year = {1972},
}

TY - JOUR
AU - Rao, M. M.
TI - Prediction sequences in smooth Banach spaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1972
PB - Gauthier-Villars
VL - 8
IS - 4
SP - 319
EP - 332
LA - eng
UR - http://eudml.org/doc/76963
ER -

References

top
  1. [1] T. Andô and I. Amemiya, Almost everywhere convergence of prediction sequences in Lp, 1 &lt; p &lt; ∞, Z. Wahrscheinlichkeitstheorie verw. Greb., t. 4, 1965, p. 113-120. Zbl0125.36806
  2. [2] R.C. Buck, Linear spaces and approximation theory, in On Numerical Approximation (Ed. R. E. Langer). Univ. Wisconsin Press, Madison, 1959, p. 11-23. Zbl0083.28801MR101611
  3. [3] R.C. Buck, Application of duality in approximation theory, in Approximation of Functions (Ed. H. L. Garabedian), Elsevier, New York, 1965, p. 27-42. Zbl0147.11204MR196367
  4. [4] D.F. Cudia, Rotundity, Proc. Symp. Pure Math., Vol. 7, Amer. Math. Soc., 1963, p. 73-97. Zbl0141.11901MR155166
  5. [5] M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1958. Zbl0082.10603MR94675
  6. [6] R.J. Duffin and L.A. Karlovitz, Formulation of linear programs in analysis I: Approximation theory, S. I. A. M. J. Appl. Math., t. 16, 1968, p. 662-675. Zbl0186.11002MR234186
  7. [7] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958. Zbl0084.10402MR1009162
  8. [8] K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J., t. 25, 1958, p. 553-568. Zbl0084.33101MR98976
  9. [9] M.A. Krasnosel'skiǐ and Ya.B. Rutickiǐ, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Gronigen, 1961. Zbl0095.09103MR126722
  10. [10] W.A.J. Luxemburg and A.C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann., t. 149, 1963, p. 150-180. Zbl0106.30804MR145374
  11. [11] M.M. Rao, Smoothness of Orlicz spaces, Indag. Math., t. 27, 1965, p. 671-690. Zbl0132.09104MR190704
  12. [12] M.M. Rao, Notes on pointwise convergence of closed martingales, Indag. Math., t. 29, 1967, p. 170-176. Zbl0166.13801MR212857
  13. [13] M.M. Rao, Abstract non linear prediction and operator martingales, J. Multivariate Anal., t. 1, 1971, p. 129-157. Zbl0234.60056MR301794
  14. [14] V.L. Šmulian, Sur la structure de la sphère unitaire dans l'espace de Banach, Mat. Sb. (N. S.), t. 9 (51), 1941, p. 545-561. Zbl0028.07101MR5775JFM67.0400.02
  15. [15] A.C. Zaanen, Integration, North Holland Publishing Co., Amsterdam, 1967. Zbl0175.05002MR222234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.