On the classification of dynamical systems

Dang-Ngoc-Nghiem

Annales de l'I.H.P. Probabilités et statistiques (1973)

  • Volume: 9, Issue: 4, page 397-425
  • ISSN: 0246-0203

How to cite

top

Dang-Ngoc-Nghiem. "On the classification of dynamical systems." Annales de l'I.H.P. Probabilités et statistiques 9.4 (1973): 397-425. <http://eudml.org/doc/76990>.

@article{Dang1973,
author = {Dang-Ngoc-Nghiem},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {397-425},
publisher = {Gauthier-Villars},
title = {On the classification of dynamical systems},
url = {http://eudml.org/doc/76990},
volume = {9},
year = {1973},
}

TY - JOUR
AU - Dang-Ngoc-Nghiem
TI - On the classification of dynamical systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1973
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 397
EP - 425
LA - eng
UR - http://eudml.org/doc/76990
ER -

References

top
  1. [1] L.K. Arnold, On σ-finite invariant measures. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 9, 1968, p. 85-97. Zbl0196.18402MR227362
  2. [2] A. Brunel, Sur les mesures invariantes. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 5, 1966, p. 330-333. Zbl0147.31302MR207957
  3. [3] A. Calderon, Sur les mesures invariantes. C. R. Acad. Sci. (Paris), t. 240, 1955, p. 1960-1962. Zbl0064.05102MR69257
  4. [4] R.V. Chacon, A class of linear transformations. Proc. Amer. Math. Soc., t. 15, 1964, p. 560-564. Zbl0168.11702MR165071
  5. [5] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, 1969. Zbl0175.43801
  6. [6] J. Dixmier, Les C*-algèbres et leurs représentations. Gauthier-Villars, 1969. Zbl0174.18601MR246136
  7. [7] Y.N. Dowker, On measurable transformations in finite measure spaces. Ann. of Math., t. 62 (2), 1955, p. 504-516. Zbl0065.28701MR72929
  8. [8] H.A. Dye, On groups of measure preserving transformations I. Amer. J. Math., t. 81, 1959, p. 119-159. Zbl0087.11501MR131516
  9. [9] H.A. Dye, On groups of measure preserving transformations II. Amer. J. Math., t. 85, 1963, p. 551-576. Zbl0191.42803MR158048
  10. [10] A. Guichardet, Une caractérisation des algèbres de Von Neumann discrètes. Bull. Soc. Math. France, t. 89, 1961, p. 77-101. Zbl0168.11302MR139020
  11. [11] A.B. Hajian, On ergodic measure preserving transformations defined on an infinite measure space. Proc. Amer. Math. Soc., t. 16, 1965, p. 45-48. Zbl0136.03703MR169987
  12. [12] A.B. Hajian, Y. Ito and S. Kakutani, Invariant measures and orbits of dissipative transformations. Advances in Math., t. 8, 1972, p. 52-65. Zbl0236.28010MR302860
  13. [13] A.B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc., t. 110, 1964, p. 136-151. Zbl0122.29804MR154961
  14. [14] A.B. Hajian and S. Kakutani, Transformations of σ-Type. To appear. Zbl0213.07601
  15. [15] P. Halmos, Lectures on ergodic theory. Math. Soc. of Japan, N. Y., Chelsea Publishing Co., 1956. Zbl0073.09302MR97489
  16. [16] P. Halmos, Invariant measures. Ann. of Math., Ser. II, t. 48, 1947, p. 735-754. Zbl0029.35202MR21963
  17. [17] E. Hopf, Theory of measure and invariant integrals. Trans. Amer. Math. Soc., 1932, p. 373-393. Zbl0004.26001MR1501643
  18. [18] K. Jacobs, Invariant and non invariant measures. Lecture Notes in Math. (Springer-Verlag), n° 31, 1967, p. 118-135. Zbl0174.34501MR232912
  19. [19] L.K. Jones and U. Krengel, On transformations without finite invariant measure. To appear. Zbl0286.28017MR340548
  20. [20] S. Kakutani, Induced measure perserving transformations. Proc. Imp. Acad. Tokyo, t. 19, 1943, p. 635-641. Zbl0060.27406MR14222
  21. [21] Y. Kawada, Uber die exitenz der invarianten Integrale. Jap. J. Math., t. 19, 1944, p. 81-95. Zbl0060.27304MR15044
  22. [22] U. Krengel, Entropy of conservative transformations. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 7, 1967, p. 161-181. Zbl0183.19303MR218522
  23. [23] W. Krieger, On the isomorphy problem for ergodic equivalence relations. Math. Zeitschr., t. 103, 1968, p. 78-84. Zbl0177.30902MR230878
  24. [24] W. Krieger, On Non-singular Transformations of a measure space I. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 11, 1969, p. 83-97. Zbl0185.11901MR240279
  25. [25] W. Krieger, On Non-singular Transformations of a measure space II. Z. Wahrscheinlichkeistheorie Verw. Geb., t. 11, 1969, p. 98-119. Zbl0185.11901MR240279
  26. [26] W. Krieger, On constructing non-*isomorphic Hyperfinite factors of Type III. J. Funct. Analysis, t. 6, 1970, p. 97-109. Zbl0209.44601MR259624
  27. [28] J. Neveu, Sur l'existence des mesures invariantes en théorie ergodique. C. R. Acad. Sci. (Paris), t. 260, 1965, p. 393-396. Zbl0127.09301MR192026
  28. [29] J. Neveu, Existence of bounded inv. measures in ergodic theory. Proc. fifth Berkeley Sym. Math. Stat. Prob., University of California Press, Vol. II, Part 2, 1967, p. 461-472. Zbl0221.28008MR212161
  29. [30] J. Neveu, Bases Mathématiques du Calcul des Probabilités. Masson, 1970. Zbl0203.49901MR272004
  30. [31] J. Neveu, Atomes conditionnels d'espaces de Probabilité et Théorie de l'Information. Symposium on Probability Methods in Analysis. Lecture Notes in Math., Springer-Verlag, t. 31, 1967, p. 256-271. Zbl0171.17401MR220544
  31. [32] D. Ornstein, On invariant measures. Publ. Amer. Math. Soc., t. 66, 1960. Zbl0154.30502MR146350
  32. [33] S. Sakai, C*-Algebras and W*-algebras. Springer-Verlag, 1971. Zbl0219.46042MR442701
  33. [34] E. Størmer, Automorphisms and equivalence in Von Neumann Algebras. To appear. Zbl0241.46060MR318910
  34. [35] E. Størmer, Invariant measures and Von Neumann Algebras. To appear. Zbl0245.46086
  35. [36] L. Sucheston, On existence of finite invariant measures. Math. Z., t. 86, 1964, p. 327- 336. Zbl0128.11404MR190293
  36. [37] M. Takesaki, Tomita's Theory of Modular Hilbert Algebras. Lecture Notes, n° 128, Springer-Verlag, Berlin, 1970. Zbl0193.42502MR270168
  37. [38] M. Takesaki, The Theory of Operator Algebras. Univ. of California, Los Angeles, C. A., 1969–1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.