Ergodic properties of marked point processes in R r

R. T. Smythe

Annales de l'I.H.P. Probabilités et statistiques (1975)

  • Volume: 11, Issue: 2, page 109-125
  • ISSN: 0246-0203

How to cite

top

Smythe, R. T.. "Ergodic properties of marked point processes in $R^r$." Annales de l'I.H.P. Probabilités et statistiques 11.2 (1975): 109-125. <http://eudml.org/doc/77015>.

@article{Smythe1975,
author = {Smythe, R. T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {109-125},
publisher = {Gauthier-Villars},
title = {Ergodic properties of marked point processes in $R^r$},
url = {http://eudml.org/doc/77015},
volume = {11},
year = {1975},
}

TY - JOUR
AU - Smythe, R. T.
TI - Ergodic properties of marked point processes in $R^r$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1975
PB - Gauthier-Villars
VL - 11
IS - 2
SP - 109
EP - 125
LA - eng
UR - http://eudml.org/doc/77015
ER -

References

top
  1. [1] A.P. Calderon, A general ergodic theorem. Annals of Math., t. 58, 1953, p. 182-191. Zbl0052.11903MR55415
  2. [2] K.L. Chung, A Course in Probability Theory (2nd edition), Academic Press, 1974. Zbl0345.60003MR1796326
  3. [3] D.J. Daley and D. Vere-Jones, A summary of the theory of point processes, in Stochastic Point Processes: Statistical Analysis, Theory and Applications, P. A. W. Lewis, ed., Wiley, 1972, p. 299-383. Zbl0278.60035MR365698
  4. [4] C.G. Esseen and B. Von Bahr, Inequalities for the rth absolute moments of a sum of random variables, 1 ≤ r ≤ 2. Ann. Math. Stat., t. 36, 1965, p. 299-303. Zbl0134.36902MR170407
  5. [5] E. Hewitt and K. Stromberg, Real Analysis, Springer-Verlag, 1965. Zbl0137.03202MR188387
  6. [6] P. Jagers, Point processes, in Advances in Probability, vol. 3, P. Ney, ed., Marcel Dekker, 1974. MR397872
  7. [7] M. Loève, Probability Theory (second edition), Van Nostrand, 1960. Zbl0095.12201
  8. [8] A. Prekopa, On Poisson and compound Poisson stochastic functions. Studia Math., t. 16, 1957, p. 142-155. Zbl0208.43503MR97843
  9. [9] G.R. Shorack and R.T. Smythe, Inequalities for max Sk/bk, where k ∈ Nr (to appear in Proc. Am. Math. Soc.). Zbl0327.60036MR400386
  10. [10] R.T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables. Annals of Probability, t. 1, 1973, p. 164-170. Zbl0258.60026MR346881
  11. [11] R.T. Smythe, Sums of independent random variables on partially ordered sets. Annals of Probability, t. 2, 1974, p. 906-917. Zbl0292.60081MR358973
  12. [12] M. Wichura, Inequalities with applications to the weak convergence of random processes. Ann. Math. Stat., t. 40, 1969, p. 681-687. Zbl0214.17701MR246359
  13. [13] A. Zygmund, An individual ergodic theorem for non-commutative transformations. Acta Sci. Math. Szeged, t. 14, 1951, p. 103-110. Zbl0045.06403MR45948

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.