A potential operator and some ergodic properties of a positive L contraction

K. A. Astbury

Annales de l'I.H.P. Probabilités et statistiques (1976)

  • Volume: 12, Issue: 2, page 151-162
  • ISSN: 0246-0203

How to cite

top

Astbury, K. A.. "A potential operator and some ergodic properties of a positive $L_\infty $ contraction." Annales de l'I.H.P. Probabilités et statistiques 12.2 (1976): 151-162. <http://eudml.org/doc/77039>.

@article{Astbury1976,
author = {Astbury, K. A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {151-162},
publisher = {Gauthier-Villars},
title = {A potential operator and some ergodic properties of a positive $L_\infty $ contraction},
url = {http://eudml.org/doc/77039},
volume = {12},
year = {1976},
}

TY - JOUR
AU - Astbury, K. A.
TI - A potential operator and some ergodic properties of a positive $L_\infty $ contraction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1976
PB - Gauthier-Villars
VL - 12
IS - 2
SP - 151
EP - 162
LA - eng
UR - http://eudml.org/doc/77039
ER -

References

top
  1. [1] J. Deny, Les noyaux élémentaires, Séminaire de Théorie du Potential (directed by M. BRELOT, G. CHOQUET, AND J. DENY), Institut Henri Poincaré, Paris, 4e année, 1959–1960. 
  2. [2] S.R. Foguel, The Ergodic Theory of Markov Processes. New York, Van Nostrand Reinhold, 1969. Zbl0282.60037MR261686
  3. [3] S.R. Foguel, More on « The Ergodic Theory of Markov Processes ». University of British Columbia Lecture Notes, Vancouver, 1973. 
  4. [4] S.R. Foguel, Ergodic Decomposition of a Topological Space. Israel J. Math., t. 7, 1969, p. 164-167. Zbl0179.08302MR249570
  5. [5] S. Horowitz, Markov Processes on a Locally Compact Space. Israel J. Math., t. 7, 1969, p. 311-324. Zbl0216.47102MR264759
  6. [6] M. Lin, Conservative Markov Processes on a Topological Space. Israel J. Math., t. 8, 1970, p. 165-186. Zbl0219.60005MR265559
  7. [7] P.A. Meyer, Probability and Potentials. Waltham, Massachusetts, Blaisdell Publishing Company, 1966. Zbl0138.10401MR205288
  8. [8] J. Neveu, Mathematical Foundations of the Calculus of Probability. San Francisco, Holden-Day, 1965. Zbl0137.11301MR198505
  9. [9] H.H. Schaefer, Invariant Ideals of Positive Operators in C(X), I. Illinois J. Math., t. 11, 1967, p. 701-715. Zbl0168.11801MR218912

NotesEmbed ?

top

You must be logged in to post comments.