A potential operator and some ergodic properties of a positive L contraction

K. A. Astbury

Annales de l'I.H.P. Probabilités et statistiques (1976)

  • Volume: 12, Issue: 2, page 151-162
  • ISSN: 0246-0203

How to cite

top

Astbury, K. A.. "A potential operator and some ergodic properties of a positive $L_\infty $ contraction." Annales de l'I.H.P. Probabilités et statistiques 12.2 (1976): 151-162. <http://eudml.org/doc/77039>.

@article{Astbury1976,
author = {Astbury, K. A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {151-162},
publisher = {Gauthier-Villars},
title = {A potential operator and some ergodic properties of a positive $L_\infty $ contraction},
url = {http://eudml.org/doc/77039},
volume = {12},
year = {1976},
}

TY - JOUR
AU - Astbury, K. A.
TI - A potential operator and some ergodic properties of a positive $L_\infty $ contraction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1976
PB - Gauthier-Villars
VL - 12
IS - 2
SP - 151
EP - 162
LA - eng
UR - http://eudml.org/doc/77039
ER -

References

top
  1. [1] J. Deny, Les noyaux élémentaires, Séminaire de Théorie du Potential (directed by M. BRELOT, G. CHOQUET, AND J. DENY), Institut Henri Poincaré, Paris, 4e année, 1959–1960. 
  2. [2] S.R. Foguel, The Ergodic Theory of Markov Processes. New York, Van Nostrand Reinhold, 1969. Zbl0282.60037MR261686
  3. [3] S.R. Foguel, More on « The Ergodic Theory of Markov Processes ». University of British Columbia Lecture Notes, Vancouver, 1973. 
  4. [4] S.R. Foguel, Ergodic Decomposition of a Topological Space. Israel J. Math., t. 7, 1969, p. 164-167. Zbl0179.08302MR249570
  5. [5] S. Horowitz, Markov Processes on a Locally Compact Space. Israel J. Math., t. 7, 1969, p. 311-324. Zbl0216.47102MR264759
  6. [6] M. Lin, Conservative Markov Processes on a Topological Space. Israel J. Math., t. 8, 1970, p. 165-186. Zbl0219.60005MR265559
  7. [7] P.A. Meyer, Probability and Potentials. Waltham, Massachusetts, Blaisdell Publishing Company, 1966. Zbl0138.10401MR205288
  8. [8] J. Neveu, Mathematical Foundations of the Calculus of Probability. San Francisco, Holden-Day, 1965. Zbl0137.11301MR198505
  9. [9] H.H. Schaefer, Invariant Ideals of Positive Operators in C(X), I. Illinois J. Math., t. 11, 1967, p. 701-715. Zbl0168.11801MR218912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.