Strong ratio limit theorems for mixing Markov operators

Michael Lin

Annales de l'I.H.P. Probabilités et statistiques (1976)

  • Volume: 12, Issue: 2, page 181-191
  • ISSN: 0246-0203

How to cite

top

Lin, Michael. "Strong ratio limit theorems for mixing Markov operators." Annales de l'I.H.P. Probabilités et statistiques 12.2 (1976): 181-191. <http://eudml.org/doc/77041>.

@article{Lin1976,
author = {Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {181-191},
publisher = {Gauthier-Villars},
title = {Strong ratio limit theorems for mixing Markov operators},
url = {http://eudml.org/doc/77041},
volume = {12},
year = {1976},
}

TY - JOUR
AU - Lin, Michael
TI - Strong ratio limit theorems for mixing Markov operators
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1976
PB - Gauthier-Villars
VL - 12
IS - 2
SP - 181
EP - 191
LA - eng
UR - http://eudml.org/doc/77041
ER -

References

top
  1. [1] S.R. Foguel, The ergodic theory of Markov processes. Van NostrandMathematical Studies21. New York, Van NostrandReinhold, 1969. Zbl0282.60037MR261686
  2. [2] S.R. Foguel, On iterates of convolutions. Proc. Amer. Math. Soc., t. 47, 1975, p. 368- 370. Zbl0299.43004MR374816
  3. [3] S.R. Foguel and M. Lin, Some ratio limit theorems for Markov operators. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 23, 1972, p. 55-66. Zbl0223.60027MR310974
  4. [4] S. Horowitz, Transition probabilities and contractions of L∞. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 24, 1972, p. 263-274. Zbl0228.60028MR331516
  5. [5] S. Horowitz, On σ-finite invariant measures for Markov processes. Israel J. Math., t. 6, 1968, p. 338-345. Zbl0176.47804MR243610
  6. [6] N.C. Jain, The strong ratio limit property for some general Markov processes. Ann. Math. Stat., t. 40, 1969, p. 986-992. Zbl0194.49601MR245086
  7. [7] B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 8, 1967, p. 41-48. Zbl0153.19802MR215370
  8. [8] U. Krengel and L. Sucheston, On mixing in infinite measure spaces. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 13, 1969, p. 150-164. Zbl0176.33804MR254215
  9. [9] M.L. Levitan, Some ratio limit theorems for a general space state Markov process. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 15, 1970, p. 29-50. Zbl0192.55202MR281257
  10. [10] M.L. Levitan and L.H. Smolowitz, Limit theorems for reversible Markov processes. Ann. Prob., t. 1, 1973, p. 1014-1025. Zbl0271.60068MR353452
  11. [11] M. Lin, Strong ratio limit theorems for Markov Processes. Ann. Math. Stat., t. 43, 1972, p. 569-579. Zbl0243.60039MR315787
  12. [12] M. Lin, Convergence of the iterates of a Markov operator. Z. Wahrscheinlichkeitstheorie Verw. Geb., t. 29, 1974, p. 153-163. Zbl0269.60057MR365714
  13. [13] D. Ornstein and L. Sucheston, An operator theorem on L1 convergence to zero with applications to Markov kernels. Ann. Math. Stat., t. 41, 1970, p. 1631-1639. Zbl0284.60068MR272057
  14. [14] W. Pruitt, Strong ratio limit property for R-recurrent Markov chains. Proc. Amer. Math. Soc., t. 16, 1965, p. 196-200. Zbl0131.16603MR174089
  15. [15] C. Stone, Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc., t. 125, 1966, p. 86-100. Zbl0168.38501MR217887

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.