On Rudolph's representation of aperiodic flows

Ulrich Krengel

Annales de l'I.H.P. Probabilités et statistiques (1976)

  • Volume: 12, Issue: 4, page 319-338
  • ISSN: 0246-0203

How to cite

top

Krengel, Ulrich. "On Rudolph's representation of aperiodic flows." Annales de l'I.H.P. Probabilités et statistiques 12.4 (1976): 319-338. <http://eudml.org/doc/77050>.

@article{Krengel1976,
author = {Krengel, Ulrich},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {319-338},
publisher = {Gauthier-Villars},
title = {On Rudolph's representation of aperiodic flows},
url = {http://eudml.org/doc/77050},
volume = {12},
year = {1976},
}

TY - JOUR
AU - Krengel, Ulrich
TI - On Rudolph's representation of aperiodic flows
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1976
PB - Gauthier-Villars
VL - 12
IS - 4
SP - 319
EP - 338
LA - eng
UR - http://eudml.org/doc/77050
ER -

References

top
  1. [1] W. Ambrose, Representation of ergodic flows. Ann. of Math., t. 42, 1941, p. 723-739. Zbl0025.26901MR4730JFM67.0421.01
  2. [2] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows. Duke Math. J., t. 9, 1942, p. 25-42. Zbl0063.00065MR5800
  3. [3] M. Denker and E. Eberlein, Ergodic flows are strictly ergodic. Advances in Math., t. 13, 1974, p. 437-473. Zbl0283.28012MR352403
  4. [4] H.A. Dye, On groups of measure preserving transformations I. Amer. J. Math., t. 81, 1959, p. 119-159. Zbl0087.11501MR131516
  5. [5] A. Hajian, Y. Ito and S. Kakutani, Full groups and a theorem of Dye. Advances in Math., t. 17, 1975, p. 48-59. Zbl0303.28017MR374384
  6. [6] P.R. Halmos, Lectures on ergodic theory. Publ. Math. Soc. Japan, t. 3, 1956. Zbl0073.09302MR97489
  7. [7] K. Jacobs, Lipschitz functions and the prevalence of strict ergodicity for continuoustime flows. Lecture Notes in Math., t. 160, Springer, Heidelberg, 1970. Zbl0201.38302MR274709
  8. [8] L.K. Jones and U. Krengel, On transformations without finite invariant measure. Advances in Math., t. 12, 1974, p. 275-295. Zbl0286.28017MR340548
  9. [9] U. Krengel, Entropy of conservative transformations. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 7, 1967, p. 161-181. Zbl0183.19303MR218522
  10. [10] U. Krengel, Darstellungssätze für Strömungen und Halbströmungen I. Math. Ann., 176, 1968, p. 181-190. II. Math. Ann., t. 182, 1969, p. 1-39. Zbl0167.32704MR224773
  11. [11] U. Krengel, K-flows are forward deterministic, backward completely non-deterministic stationary point processes. J. Math. Anal. Appl., t. 35, 1971, p. 611-620. Zbl0215.26105MR287607
  12. [12] W. Krieger, On nonsingular transformations of a measure space I., Z. Wahrschein- lichkeitstheorie verw. Geb., t. 11, 1969, p. 83-97. Zbl0185.11901
  13. [13] I. Kubo, Quasi-flows. Nagoya Math. J., t. 35, 1969, p. 1-30. Zbl0209.08903MR247032
  14. [14] J. De Sam Lazaro, Sur les hélices du flot spécial sous une fonction. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 30, 1974, p. 279-309. Zbl0282.60004MR394833
  15. [15] J. De Sam Lazaro and P.A. Meyer, Questions de théorie des flots. Séminaire de Prob. IX, Lecture Notes in Math., Springer, Heidelberg, t. 465, 1975, p. 2-153. Zbl0311.60019
  16. [16] V.A. Rohlin, Selected topics of the metric theory of dynamical systems. Uspekhi Math. Nauk., t. 4, 1949, p. 57-128 (Russian). Engl. translation in A. M. S. Translations, t. 49. Zbl0032.28403MR30710
  17. [17] D. Rudolph, A two-valued step coding for ergodic flows. Math. Z., t. 150, 1976, p. 201-220. Zbl0325.28019MR414825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.