Hunt processes and analytic potential theory on rigged Hilbert spaces

Sergio Albeverio; Raphael Høegh-Krohn

Annales de l'I.H.P. Probabilités et statistiques (1977)

  • Volume: 13, Issue: 3, page 269-291
  • ISSN: 0246-0203

How to cite

top

Albeverio, Sergio, and Høegh-Krohn, Raphael. "Hunt processes and analytic potential theory on rigged Hilbert spaces." Annales de l'I.H.P. Probabilités et statistiques 13.3 (1977): 269-291. <http://eudml.org/doc/77068>.

@article{Albeverio1977,
author = {Albeverio, Sergio, Høegh-Krohn, Raphael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {269-291},
publisher = {Gauthier-Villars},
title = {Hunt processes and analytic potential theory on rigged Hilbert spaces},
url = {http://eudml.org/doc/77068},
volume = {13},
year = {1977},
}

TY - JOUR
AU - Albeverio, Sergio
AU - Høegh-Krohn, Raphael
TI - Hunt processes and analytic potential theory on rigged Hilbert spaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1977
PB - Gauthier-Villars
VL - 13
IS - 3
SP - 269
EP - 291
LA - eng
UR - http://eudml.org/doc/77068
ER -

References

top
  1. [1] S. Albeverio, R. Høegh-Krohn, Quasi invariant measures, symmetric diffusion processes and quantum fields, in Les méthodes mathématiques de la théorie quantique des champs, Colloques Internationaux du C. N. R. S., n° 248, Marseille, 23-27 juin 1975, C. N. R. S., 1976. 
  2. [2] S. Albeverio, R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Zeitschr. f. Wahrscheinlich Keitsth. verw. Geb., 1977. Zbl0342.60057
  3. [3] S. Albeverio, R. Høegh-Krohn, Canonical quantum fields in two space-time dimensions, Oslo University Preprint, March 1976 (to be published). 
  4. [4] S. Albeverio, R. Høegh-Krohn, in the « Proceedings of the IV. International Symposium on Information Theory », Leningrad, June 1976, Akad. Nauk. SSSR, Moscow-Leningrad, 1976. Zbl0337.28009
  5. [5] M. Fukushima, On boundary conditions for multidimensional Brownian motion with symmetric resolvents, J. Math. Soc. Japan, t. 21, 1969, p. 485-526. Zbl0181.20903MR236998
  6. [6] M. Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc., t. 155, 1971, p. 455-473. Zbl0248.31007MR281256
  7. [7] M. Fukushima, Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc., t. 162, 1971, p. 185-224. Zbl0254.60055MR295435
  8. [8] M. Fukushima, On the generation of Markov processes by symmetric forms, in Proceedings of the Second Japan-USSR Symposium on Probability Theory, Springer, Berlin, 1973, p. 46-79. Zbl0262.60054MR494513
  9. [9] M. Fukushima, Local property of Dirichlet forms and continuity of sample paths, Zeitschr. f. Wahrsch. u. verw. Geb., t. 29, 1974, p. 1-6. Zbl0283.60067MR365726
  10. [10] M. Silverstein, Symmetric Markov processes, Springer, Berlin, 1974. Zbl0296.60038MR386032
  11. [11] M. Silverstein, Boundary theory for symmetric Markov processes, Springer, Berlin, 1976. Zbl0331.60046MR451422
  12. [12] H. Cartan, Théorie générale du balayage en potentiel newtonien, Ann. Univ. Grenoble, Sect. Sci. Math. Phys. (N. S.), t. 22, 1946, p. 221-280. Zbl0061.22701MR20682
  13. [13] A. Beurling, J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci., USA, t. 45, 1959, p. 208-215. Zbl0089.08201MR106365
  14. [14] J. Deny, Méthodes Hilbertiennes en théorie du potentiel, in Potential Theory, C. I. M. E., Cremonese, Roma, 1970, p. 121-201. Zbl0212.13401MR284609
  15. [15] J. Deny, Théorie de la capacité dans les espaces fonctionnels, Séminaire Brelot-Choquet-Deny (Théorie du potentiel), 9e année, n° 1, 1964-1965. Zbl0138.36605MR190367
  16. [16] M. Ito, A note on extended regular functional spaces, Proc. Jap. Acad. Sci., t. 43, 1967, p. 435-440. Zbl0156.33901MR227454
  17. [17] H. Kunita, General boundary conditions for multidimensional diffusion processes, J. Math. Kyoto Univ., t. 10, 1970, p. 273-335. Zbl0204.41502MR270445
  18. [18] J. Bliedtner, Dirichlet forms on regular function spaces, in « Seminar on Potential Theory II », p. 15-62, Lecture Notes in Math., 226, Springer, Berlin, 1971. MR399490
  19. [19] M. Reed, B. Simon, in « Methods of Modern Mathematical Physics » III, to appear (Academ. Press, New York). Zbl0405.47007MR529429
  20. [20] E.B. Dynkin, Markoi, processes, vol. I, II, Springer, Berlin, 1965 (transl.). 
  21. [21] G.A. Hunt, Martingales et Processus de Markov, Dunod, Paris, 1966. Zbl0158.35802MR211453
  22. [22] R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  23. [23] P.A. Meyer, Probability and potentials, Ginn, Blaisdell, Waltham, 1966. C. Dellacherie, P.A. Meyer, Probabilités et potentiels, Herman, Paris, 1975. Zbl0138.10401MR205288
  24. [24] P.A. Meyer, Processus de Markov, Springer, Berlin, 1967. Zbl0189.51403MR219136
  25. [25] Y.L. Daletskii, Infinite dimensional elliptic operators and the corresponding parabolic equations, Russ. Math. Surv., t. 22, n° 4, 1967, p. 1-53 (transl.). Zbl0164.41304
  26. [26] L. Gross, Potential theory on Hilbert space, J. Funct. Anal., t. 1, 1967, p. 123-181. Zbl0165.16403MR227747
  27. [27] J. Kuelbs, Abstract Wiener spaces and applications to analysis, Pac. J. Math., t. 31, 1969, p. 433-450. Zbl0187.07001MR252597
  28. [28] A. Piech, Diffusion semigroups on abstract Wiener space, Trans. Amer. Math. Soc., t. 166, 1972, p. 411-430. Zbl0247.47034MR295141
  29. [29] M.N. Feller, On infinite dimensional elliptic operators, Sov. Math. Dokl., t. 13, n° 4, 1972, p. 890-894 (transl.). Zbl0316.47028MR326390
  30. [30] H.H. Kuo, Potential theory associated with the Uhlenbeck-Ornstein process, J. Funct. Anal., t. 21, 1976, p. 63-75. Zbl0375.60087MR391285
  31. [31] V. Goodman, A Liouville Theorem for abstract Wiener spaces, Amer. J. Math., t. 95, 1973, p. 215-220. Zbl0273.31012MR322971
  32. [32] B. Gaveau, Intégrale stochastique radonifiante, C. R. Acad. Sci. (Paris), t. 276, 1973, p. 617-620. Zbl0256.60049MR346901
  33. [33] M. Yor, Existence et unicité de diffusions à valeurs dans un espace de Hilbert. Ann. Inst. Henri Poincaré, t. 10, n° 1, 1974, p. 55-88. Zbl0281.60094MR356257
  34. [34] A. Badrikian, S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires Gaussiennes, Lecture Notes in Math., 379, Springer, Berlin, 1974. Zbl0288.60009MR420760
  35. [35] P. Krée, Théorie des distributions et calculs différentiels sur un espace de Banach, inSéminaire P. Lelong, 1974-1975, Lecture Notes in Math., Springer, Berlin, 1976. Zbl0334.46044MR417780
  36. [36] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Inst., Oxford, Univ. Press, 1973. Zbl0298.28001MR426084
  37. [37] S. Albeverio, R. Høegh-Krohn, L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys., t. 18, 1977, p. 907-917. Zbl0368.60091MR446236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.