En général, un semi-flot spécial est exact

F. Ledrappier

Annales de l'I.H.P. Probabilités et statistiques (1978)

  • Volume: 14, Issue: 4, page 465-478
  • ISSN: 0246-0203

How to cite

top

Ledrappier, F.. "En général, un semi-flot spécial est exact." Annales de l'I.H.P. Probabilités et statistiques 14.4 (1978): 465-478. <http://eudml.org/doc/77104>.

@article{Ledrappier1978,
author = {Ledrappier, F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Special Semiflow; Generating Flow; Exact Semiflow; Ergodic Endomorphism},
language = {fre},
number = {4},
pages = {465-478},
publisher = {Gauthier-Villars},
title = {En général, un semi-flot spécial est exact},
url = {http://eudml.org/doc/77104},
volume = {14},
year = {1978},
}

TY - JOUR
AU - Ledrappier, F.
TI - En général, un semi-flot spécial est exact
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1978
PB - Gauthier-Villars
VL - 14
IS - 4
SP - 465
EP - 478
LA - fre
KW - Special Semiflow; Generating Flow; Exact Semiflow; Ergodic Endomorphism
UR - http://eudml.org/doc/77104
ER -

References

top
  1. [1] F. Blanchard, Partitions extrêmales des flots d'entropie finie. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 36, 1976, p. 129-136. Zbl0319.28012MR422570
  2. [2] B.M. Gurevic, Some existence conditions for K-decompositions for special flows. Trans. Moscow Math. Soc., t. 17, 1967, p. 99-120. Zbl0207.48502MR229796
  3. [3] M. Ratner, Bernoulli flows over maps of the interval (preprint). 
  4. [4] D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic. Advances in Math., t. 5, 1970, p. 339-349. Zbl0227.28014MR274716
  5. [5] D.S. Ornstein and M. Smorodinsky, Ergodic flows of positive entropy can be time changed to become K-flows. Israël Journal of Maths, t. 26, 1977, p. 75-83. Zbl0346.28011MR447526
  6. [6] D.S. Ornstein and B. Weiss, Unilateral codings of Bernoulli systems. Israël Journal of Maths, t. 21, 1975, p. 159-166. Zbl0323.28008MR412386
  7. [7] V.A. Roklin, Lectures on the entropy theory of measure preserving transformations. Russian Maths Surveys, t. 22, 1967, p. 1-52. Zbl0174.45501
  8. [8] Ya G. Sinai, Weak isomorphism of transformations with invariant measure. Math. S. B., t. 63, 1964, p. 23-42 ; A. M. S. Translations, t. 57, 1966, p. 123-143. MR161961
  9. [9] J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Israël Journal of Maths, t. 21, 1975, p. 177-207. Zbl0329.28008MR399419
  10. [10] H. Totoki, On a class of special flows. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 15, 1970, p. 157-167. Zbl0193.45903MR279279

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.