On the asymptotic behaviour of sequences of random variables and of their previsible compensators

Dão Quang Tuyên

Annales de l'I.H.P. Probabilités et statistiques (1981)

  • Volume: 17, Issue: 1, page 63-73
  • ISSN: 0246-0203

How to cite

top

Tuyên, Dão Quang. "On the asymptotic behaviour of sequences of random variables and of their previsible compensators." Annales de l'I.H.P. Probabilités et statistiques 17.1 (1981): 63-73. <http://eudml.org/doc/77157>.

@article{Tuyên1981,
author = {Tuyên, Dão Quang},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {asymptotic behaviour; previsible compensators; asymptotic martingales},
language = {eng},
number = {1},
pages = {63-73},
publisher = {Gauthier-Villars},
title = {On the asymptotic behaviour of sequences of random variables and of their previsible compensators},
url = {http://eudml.org/doc/77157},
volume = {17},
year = {1981},
}

TY - JOUR
AU - Tuyên, Dão Quang
TI - On the asymptotic behaviour of sequences of random variables and of their previsible compensators
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1981
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 63
EP - 73
LA - eng
KW - asymptotic behaviour; previsible compensators; asymptotic martingales
UR - http://eudml.org/doc/77157
ER -

References

top
  1. [1] D.G. Austin, G.A. Edgar, A. Ionescu Tulcea, Pointwise convergence in term of expectation. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 30, 1974, p. 17-26. Zbl0276.60034MR358945
  2. [2] [a] A. Bellow, On vector valued asymptotic martingales. Proc. Nat. Acad. Sci. U. S. A., t. 73, n° 6, 1976, p. 1798-1799. Zbl0366.60067MR407966
  3. [b] A. Bellow, Several stability properties of the class of asymptotic martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 37, 1977, p. 275-290. Zbl0404.60053MR571669
  4. [3] A.N. Borodin, Quasi-martingales. Theory of Probability and Appl.1978-3. Zbl0389.60034MR509742
  5. [4] Dan Anbav, An application of a theorem of Robbins and Siegmund. Annals of Statistics, t. 4, n° 5, 1976, p. 1018-1021 Zbl0345.62069MR413390
  6. [5] G.A. Edgar, L. Sucheston, Amarts, A class of asymptotic martingales (Discrete parameter), J. Multivariate Anal., t. 6, 1976, p. 193-221. Zbl0336.60033MR413251
  7. [6] J. Neveu, a) Mathematical foundations of the calculus of probability, Holden Day, San Fransisco, 1965 ; b) Martingales discrètes, Masson, 1972. Zbl0137.11301MR198505
  8. [7] M.M. Rao, Quasi-martingales. Math. Scand., t. 24, 1969, p. 79-92. Zbl0193.45502MR275511
  9. [8] H. Robbins, D. Siegmund, A convergence theorem for non negative almost supermartingales and some applications. Optimization methods in statistics, A. P.New-York, 1971, p. 233-257. Zbl0286.60025MR343355
  10. [9] R.J. Tomkins, A law of the Iterated Logarithm Logarithm for martingales. Z. Wahrscheinlickeitstheorie verw. Gebiete, t. 33, 1975, p. 55-59. Zbl0299.60045MR394825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.