Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes

J. M. Reinhard

Annales de l'I.H.P. Probabilités et statistiques (1982)

  • Volume: 18, Issue: 4, page 319-333
  • ISSN: 0246-0203

How to cite

top

Reinhard, J. M.. "Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes." Annales de l'I.H.P. Probabilités et statistiques 18.4 (1982): 319-333. <http://eudml.org/doc/77191>.

@article{Reinhard1982,
author = {Reinhard, J. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {semi-Markov random walk; duality in random walk; exponential identities},
language = {fre},
number = {4},
pages = {319-333},
publisher = {Gauthier-Villars},
title = {Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes},
url = {http://eudml.org/doc/77191},
volume = {18},
year = {1982},
}

TY - JOUR
AU - Reinhard, J. M.
TI - Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1982
PB - Gauthier-Villars
VL - 18
IS - 4
SP - 319
EP - 333
LA - fre
KW - semi-Markov random walk; duality in random walk; exponential identities
UR - http://eudml.org/doc/77191
ER -

References

top
  1. [1] C.K. Cheong et J.L. Teugels, On a semi-Markov generalization of the Random Walk. Stoch. Proc. and their Appl., t. 1, 1973, p. 53-66. Zbl0252.60038MR368207
  2. [2] W. Feller, An introduction to Probability Theory and its Applications, t. 2, 1971, Wiley, New York. Zbl0219.60003MR270403
  3. [3] J. Janssen, Les Processus (J-X). Cahiers du C. E. R. O., t. 11, 1969, p. 181-214. Zbl0211.20901MR273681
  4. J. Janssen, Sur une généralisation du concept de promenade aléatoire sur la droite réelle. Ann. Inst. H. Poincaré, t. A6, 1970, p. 249-269. Zbl0261.60055MR293728
  5. J. Janssen, Some duality results in semi-Markov chain theory. Rev. Roum. Math. Pures et Appl., t. 21, 1976, p. 429-441. Zbl0371.60107MR426195
  6. [4] J. Janssen et J.M. Reinhard, Duality results for a class of multivariate semi-Markov processes (à paraître dans J. Appl. Prob., mars 1982). Zbl0504.60087
  7. [5] H.D. Miller, A matrix factorization problem in the theory of random variables defined on a semi-Markov chain, Proc. Camb. Philos. Soc., t. 58, 1962, p. 286-298. Zbl0114.33702
  8. [6] M. Newbould, A classification of a random walk defined on a finite Markov chain. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 26, 1973, p. 95-104. Zbl0247.60040MR423541
  9. [7] R. Pyke, Markov renewal processes: definitions and preliminary properties. Ann. Math. Stat., t. 32, 1961, p. 1231-1242; Zbl0267.60089MR133888
  10. R. Pyke, Markov renewal processes with finitely many states. Ann. Math. Stat., t. 32, 1961, p. 1243-1259. Zbl0201.49901MR154324
  11. [8] L.D. Stone, On the distribution of the maximum of a semi-Markov process. Ann. Math. Stat., . t. 39, 1968, p. 947-956. Zbl0241.60079MR232460

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.