Randomly forced vibrations of a string

Enzo Orsingher

Annales de l'I.H.P. Probabilités et statistiques (1982)

  • Volume: 18, Issue: 4, page 367-394
  • ISSN: 0246-0203

How to cite

top

Orsingher, Enzo. "Randomly forced vibrations of a string." Annales de l'I.H.P. Probabilités et statistiques 18.4 (1982): 367-394. <http://eudml.org/doc/77193>.

@article{Orsingher1982,
author = {Orsingher, Enzo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random vibrations; upcrossing probabilities; covariance analysis; maximal displacement; Greens functions},
language = {eng},
number = {4},
pages = {367-394},
publisher = {Gauthier-Villars},
title = {Randomly forced vibrations of a string},
url = {http://eudml.org/doc/77193},
volume = {18},
year = {1982},
}

TY - JOUR
AU - Orsingher, Enzo
TI - Randomly forced vibrations of a string
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1982
PB - Gauthier-Villars
VL - 18
IS - 4
SP - 367
EP - 394
LA - eng
KW - random vibrations; upcrossing probabilities; covariance analysis; maximal displacement; Greens functions
UR - http://eudml.org/doc/77193
ER -

References

top
  1. [1] E.M. Cabaña, On the vibrating string forced by white noise. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 15, 1970, p. 111-130. Zbl0193.45101MR279909
  2. [2] E.M. Cabana, On barrier problems for the vibrating string. Z. Wahrsceinlichkeitstheorie verw. Geb., t. 22, 1972, p. 13-24. Zbl0214.16801MR322974
  3. [3] H. Cramer and M.R. Leadbetter, Stationary and related stochastic processes. J. Wiley, New York, 1967. Zbl0162.21102MR217860
  4. [4] J.P. Kahane, Some random series of functions. Heath Mathematical Monographs. Lexington Mass, 1968. Zbl0192.53801MR254888
  5. [5] M. Metivier, Notions fondamentales de la théorie des probabilités. Dunod, Paris, 1968. Zbl0169.48601
  6. [6] J. Pickhands III, Asymptotic properties of the maximum in a stationary gaussian process. Trans. Amer. Math. Soc., t. 145, 1969, p. 75-86. Zbl0206.18901MR250368
  7. [7] V.I. Smirnov, A course of higher mathematics, n° 2. Pergamon Press, 1964. Zbl0122.29703
  8. [8] U. Tyn-Mynt, Partial differential equations of mathematical physics. Elsevier, New York, 1973. Zbl0265.35001

NotesEmbed ?

top

You must be logged in to post comments.