Randomly forced vibrations of a string

Enzo Orsingher

Annales de l'I.H.P. Probabilités et statistiques (1982)

  • Volume: 18, Issue: 4, page 367-394
  • ISSN: 0246-0203

How to cite

top

Orsingher, Enzo. "Randomly forced vibrations of a string." Annales de l'I.H.P. Probabilités et statistiques 18.4 (1982): 367-394. <http://eudml.org/doc/77193>.

@article{Orsingher1982,
author = {Orsingher, Enzo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random vibrations; upcrossing probabilities; covariance analysis; maximal displacement; Greens functions},
language = {eng},
number = {4},
pages = {367-394},
publisher = {Gauthier-Villars},
title = {Randomly forced vibrations of a string},
url = {http://eudml.org/doc/77193},
volume = {18},
year = {1982},
}

TY - JOUR
AU - Orsingher, Enzo
TI - Randomly forced vibrations of a string
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1982
PB - Gauthier-Villars
VL - 18
IS - 4
SP - 367
EP - 394
LA - eng
KW - random vibrations; upcrossing probabilities; covariance analysis; maximal displacement; Greens functions
UR - http://eudml.org/doc/77193
ER -

References

top
  1. [1] E.M. Cabaña, On the vibrating string forced by white noise. Z. Wahrscheinlichkeitstheorie verw. Geb., t. 15, 1970, p. 111-130. Zbl0193.45101MR279909
  2. [2] E.M. Cabana, On barrier problems for the vibrating string. Z. Wahrsceinlichkeitstheorie verw. Geb., t. 22, 1972, p. 13-24. Zbl0214.16801MR322974
  3. [3] H. Cramer and M.R. Leadbetter, Stationary and related stochastic processes. J. Wiley, New York, 1967. Zbl0162.21102MR217860
  4. [4] J.P. Kahane, Some random series of functions. Heath Mathematical Monographs. Lexington Mass, 1968. Zbl0192.53801MR254888
  5. [5] M. Metivier, Notions fondamentales de la théorie des probabilités. Dunod, Paris, 1968. Zbl0169.48601
  6. [6] J. Pickhands III, Asymptotic properties of the maximum in a stationary gaussian process. Trans. Amer. Math. Soc., t. 145, 1969, p. 75-86. Zbl0206.18901MR250368
  7. [7] V.I. Smirnov, A course of higher mathematics, n° 2. Pergamon Press, 1964. Zbl0122.29703
  8. [8] U. Tyn-Mynt, Partial differential equations of mathematical physics. Elsevier, New York, 1973. Zbl0265.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.