Quadratic mean and almost-sure convergence of unbounded stochastic approximation algorithms with correlated observations

E. Eweda; O. Macchi

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 3, page 235-255
  • ISSN: 0246-0203

How to cite

top

Eweda, E., and Macchi, O.. "Quadratic mean and almost-sure convergence of unbounded stochastic approximation algorithms with correlated observations." Annales de l'I.H.P. Probabilités et statistiques 19.3 (1983): 235-255. <http://eudml.org/doc/77211>.

@article{Eweda1983,
author = {Eweda, E., Macchi, O.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {almost-sure convergence; correlated observations; quadratic mean convergence; stochastic gradient algorithm; finite memory; finite moments},
language = {eng},
number = {3},
pages = {235-255},
publisher = {Gauthier-Villars},
title = {Quadratic mean and almost-sure convergence of unbounded stochastic approximation algorithms with correlated observations},
url = {http://eudml.org/doc/77211},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Eweda, E.
AU - Macchi, O.
TI - Quadratic mean and almost-sure convergence of unbounded stochastic approximation algorithms with correlated observations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 3
SP - 235
EP - 255
LA - eng
KW - almost-sure convergence; correlated observations; quadratic mean convergence; stochastic gradient algorithm; finite memory; finite moments
UR - http://eudml.org/doc/77211
ER -

References

top
  1. [1] H. Robbins, S. Monro, « A Stochastic Approximation Method », The Annals of Mathematical Statistics, t. 22, 1951, p. 400-407. Zbl0054.05901MR42668
  2. [2] L. Schmetterer, « Stochastic Approximation », Proc. of the Fourth Berkeley Symp. on Math. Stat. and Proba., p. 587-609. Zbl0104.12403MR137268
  3. [3] D. Sakrison, « Stochastic Approximation, a Recursive Method for Solving Regression Problems », Adv. in Comm. Systems, A. V. Balakrishnan Éditeur, Acad. Press, 1966, p. 51-106. 
  4. [4] C. Macchi, Itération stochastique et Traitements numériques adaptatifs, Thèse d'État, Paris, 1972. 
  5. [5] B. Widrow, J.M. Mccool, M.G. Larimore, C.R. Johnson, « Stationary learning characteristics of the LMS adaptive filter »Proc. IEEE, t. 64, n° 8, 1976, p. 1151-1162. MR421814
  6. [6] O. Macchi, « Résolution adaptative de l'équation de Wiener-Hopf. Cas d'un canal de données affecté de gigue », Ann. Inst. Henri Poincaré, t. 14, n° 3, 1978, p. 355-377. Zbl0378.62073MR508936
  7. [7] H.J. Kushner, D.S. Clark, « Stochastic approximation methods for constrained and unconstrained systems », Appl. Math. Sci. Series, n° 26, Springer-Verlag, Berlin, 1978, ch. 1. Zbl0381.60004MR499560
  8. [8] L. Ljung, « Analysis of a recursive stochastic algorithm », IEEE Trans. on Automatic Control, t. AC 22, 1977, p. 551-575. Zbl0362.93031MR465458
  9. [9] D.C. Farden, « Stochastic Approximation with Correlated Data », IEEE Trans. on Information Theory, t. IT 27, n° 1, 1981, p. 105-113. Zbl0458.62072MR605941
  10. [10] E. Eweda, O. Macchi, « Convergence of an adaptive linear estimation algorithm », IEEE Trans. on Automatic Control, t. AC 28, n° 10, octobre 1983. Zbl0501.93064
  11. [11] O. Macchi, E. Eweda, « Second order convergence analysis of stochastic adaptive linear filtering ». IEEE Trans. on Automatic Control, t. 28, n° 1, janvier 1983, p. 76-85. Zbl0501.93064MR711090
  12. [12] E. Eweda, Egalisation adaptative d'un canal filtrant non stationnaire. Thèse Ingénieur-Docteur, Orsay, 19 mars 1980. 
  13. [13] E. Eweda, O. Macchi, « Poursuite adaptative du filtrage optimal non stationnaire ». C. R. Acad. Sci., t. 293, série I, 1981, p. 497-500. Zbl0478.60050MR646875
  14. [14] H. Cramer and M.R. Leadbetter, Stationary and Related Stochastic Processes. New York: Wiley, 1967. Zbl0162.21102MR217860

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.