Théorème ergodique presque sous-additif et convergence en moyenne de l'information

Jean Moulin-Ollagnier

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 3, page 257-266
  • ISSN: 0246-0203

How to cite

top

Moulin-Ollagnier, Jean. "Théorème ergodique presque sous-additif et convergence en moyenne de l'information." Annales de l'I.H.P. Probabilités et statistiques 19.3 (1983): 257-266. <http://eudml.org/doc/77212>.

@article{Moulin1983,
author = {Moulin-Ollagnier, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {almost subadditive ergodic theorem; action of an amenable group; covariance; almost subadditivity; ameaning filter; Shannon-McMillan theorem; mean conditional information},
language = {fre},
number = {3},
pages = {257-266},
publisher = {Gauthier-Villars},
title = {Théorème ergodique presque sous-additif et convergence en moyenne de l'information},
url = {http://eudml.org/doc/77212},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Moulin-Ollagnier, Jean
TI - Théorème ergodique presque sous-additif et convergence en moyenne de l'information
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 3
SP - 257
EP - 266
LA - fre
KW - almost subadditive ergodic theorem; action of an amenable group; covariance; almost subadditivity; ameaning filter; Shannon-McMillan theorem; mean conditional information
UR - http://eudml.org/doc/77212
ER -

References

top
  1. [1] M. Ackoglu et U. Krengel, Ergodic theorems for superadditive processes. A paraître. 
  2. [2] Y. Derriennic et U. Krengel, Subadditive mean ergodic theorems. A paraître. Zbl0471.28011
  3. [3] J. Fritz, Generalization of McMillan's theorem to random set functions. Studia Sci. Math. Hung., t. 5, 1970, p. 369-394. Zbl0241.60093MR293956
  4. [4] Y. Katznelson et B. Weiss, Commuting measure-preserving transformations. Israel Jour. Math., t. 12, 1972, p. 161-173. Zbl0239.28014MR316680
  5. [5] J.C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. The Annals of Probability, t. 3, 1975, p. 1031-1037. Zbl0322.60032MR393422
  6. [6] J. Moulin-Ollagnier et D. Pinchon, Filtre moyennant et valeur moyenne des capacités invariantes. Bull. S. M. F., 1982. Zbl0511.22002MR688034
  7. [7] Nguyen Xuan Xahn, Ergodic theorems for spatial processes. Zeit. für Wahr., t. 48, 1979, p. 133-158. Zbl0397.60080MR534841
  8. [8] J.P. Thouvenot, Convergence en moyenne de l'information pour l'action de Z2. Zeit. für Wahr., t. 24, 1972, p. 135-137. Zbl0266.60037MR321612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.