Grandes déviations, dynamique de populations et phénomènes malthusiens

Catherine Laredo; Alain Rouault

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 4, page 323-350
  • ISSN: 0246-0203

How to cite

top

Laredo, Catherine, and Rouault, Alain. "Grandes déviations, dynamique de populations et phénomènes malthusiens." Annales de l'I.H.P. Probabilités et statistiques 19.4 (1983): 323-350. <http://eudml.org/doc/77217>.

@article{Laredo1983,
author = {Laredo, Catherine, Rouault, Alain},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Malthusian parameter; Chernoff's theorem; supercritical Crump-Mode-Jagers process},
language = {fre},
number = {4},
pages = {323-350},
publisher = {Gauthier-Villars},
title = {Grandes déviations, dynamique de populations et phénomènes malthusiens},
url = {http://eudml.org/doc/77217},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Laredo, Catherine
AU - Rouault, Alain
TI - Grandes déviations, dynamique de populations et phénomènes malthusiens
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 4
SP - 323
EP - 350
LA - fre
KW - Malthusian parameter; Chernoff's theorem; supercritical Crump-Mode-Jagers process
UR - http://eudml.org/doc/77217
ER -

References

top
  1. [1] K.B. Athreya, P. Ney, Branching processes (Springer-Verlag), Berlin, 1972. Zbl0259.60002MR373040
  2. [2] R. Azencott, Cours de l'École d'Été de Saint-Flour. Lecture Notes in Math., n° 774, Springer, 1978. Zbl0435.60028
  3. [3] R. Azencott, G. Ruget, Mélanges d'équations différentielles et grands écarts à la loi des grands nombres. Zeits. für Wahr. t. 38, 1977, p. 1-54. Zbl0372.60082MR443097
  4. [4] J.D. Biggins, Chernoff's theorem in the branching random walk. Journ. of Appl. Prob., t. 14, 1977, p. 630-636. Zbl0373.60090MR464415
  5. [5] J.D. Biggins, The asymptotic shape of the branching random walk. Adv. in Appl. Prob., t. 10, 1978, p. 62-84. Zbl0383.60078MR518327
  6. [6] J.D. Biggins, Growth rates in the branching random walk. Zeits. für Wahr. t. 48, 1979, p. 17-34. Zbl0387.60092MR533003
  7. [7] J.D. Biggins, Spatial spread in branching processes, in « Biological growth and spread ». Lecture Notes in Biomath., n° 38, Springer, 1979. Zbl0443.60082MR609346
  8. [8] J.D. Biggins, Private communication, 1980. 
  9. [9] D.L. Burkholder, B.J. Davis, R.F. Gundy, Integral inequalities for convex functions of operators on martingales, 6th Berkeley symposium, t. II, 1970. Zbl0253.60056
  10. [10] P. Jagers, Branching processes with biological applications. Wiley, London, 1979. Zbl0356.60039MR488341
  11. [11] N. Kaplan, S. Asmussen, Branching random walks II. Stochastic Proc. and their Appl., t. 4, 1976, p. 15-31. Zbl0322.60065MR400430
  12. [12] K. Matthes, J. Kerstan, J. Mecke, Infinitely divisible point processes. Wiley Chichester, 1978. Zbl0383.60001MR517931
  13. [13] A. Rouault, Lois empiriques pour les processus de branchement spatiaux homogènes supercritiques. Note aux C. R. A. S., t. 292, 1981, p. 933. Zbl0469.60086MR625371
  14. [14] A. Rouault, Les processus de branchement multitypes spatiaux dans l'asymptotique des grandes déviations, 1981, (à paraître). 
  15. [15] A.D. Ventsel, Rough limit theorems on large deviations for Markov stochastic processes. Theory of Prob. and its Appl., t. 21, n° 2, 1976, p. 227-242 et t. 21, n° 3, 1976, p. 499-512. Zbl0361.60006MR433566

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.