Semistable convolution semigroups on measurable and topological groups
Annales de l'I.H.P. Probabilités et statistiques (1984)
- Volume: 20, Issue: 2, page 147-164
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSiebert, Eberhard. "Semistable convolution semigroups on measurable and topological groups." Annales de l'I.H.P. Probabilités et statistiques 20.2 (1984): 147-164. <http://eudml.org/doc/77229>.
@article{Siebert1984,
author = {Siebert, Eberhard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {holomorphicity; Semistable probability measures; operator-semistable laws; convolution semigroup; quasianalyticity},
language = {eng},
number = {2},
pages = {147-164},
publisher = {Gauthier-Villars},
title = {Semistable convolution semigroups on measurable and topological groups},
url = {http://eudml.org/doc/77229},
volume = {20},
year = {1984},
}
TY - JOUR
AU - Siebert, Eberhard
TI - Semistable convolution semigroups on measurable and topological groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1984
PB - Gauthier-Villars
VL - 20
IS - 2
SP - 147
EP - 164
LA - eng
KW - holomorphicity; Semistable probability measures; operator-semistable laws; convolution semigroup; quasianalyticity
UR - http://eudml.org/doc/77229
ER -
References
top- [1] T. Byczkowski, Zero-one laws for Gaussian measures on metric abelian groups. Studia Math., t. 69, 1980, p. 159-189. Zbl0478.60020MR604349
- [2] D.M. Chung, B.S. Rajput, A. Tortrat, Semistable laws on topological vector spaces.Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 60, 1982, p. 209-218. Zbl0468.60006MR663902
- [3] W. Hazod, Stable probabilities on locally compact groups. In : Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 183-208. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0492.60010MR669068
- [4] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Berlin-Göttingen-Heidelberg-New York, Springer, 1963. Zbl0115.10603
- [5] H. Heyer, Probability Measures on Locally Compact Groups, Berlin-Heidelberg-New York, Springer, 1977. Zbl0376.60002MR501241
- [6] E. Hille, R.S. Phillips, Functional Analysis andSemigroups. Amer. Math. Soc. Colloquium Publications, t. 31, Rev. ed. Providence, R. I., Amer. Math. Soc., 1957. Zbl0078.10004MR89373
- [7] W.N. Hudson, Operator-stable distributions and stable marginals.J. Multivariate Anal., t. 10, 1980, p. 26-37. Zbl0418.60025MR569794
- [8] R. Jajte, Semi-stable probability measures on RN. Studia Math., t. 61, 1977, p. 29- 39. Zbl0365.60017MR436263
- [9] A. Janssen, Zulässige Translationen von Faltungshalbgruppen. Dissertation, Dortmund, 1979. Zbl0448.28010
- [10] A. Janssen, Zero-one laws for infinitely divisible probability measures on groups.Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 60, 1982, p. 119-138. Zbl0468.60013MR661761
- [11] A. Janssen, Some zero-one laws for semistable and self-decomposable measures on locally convex spaces. In: Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 236-246. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0487.60035MR669070
- [12] Z.J. Jurek, On stability of probability measures in Euclidean spaces. In : Probability Theory on Vector Spaces II. Proceedings, Błazejewko, 1979, p. 129-145. Lecture Notes in Math., t. 828, Berlin-Heidelberg-New York, Springer, 1980. Zbl0442.60023MR611714
- [13] W. Krakowiak, Operator semi-stable probability measures on Banach spaces. Coll. Math., t. 43, 1980, p. 351-363. Zbl0465.60007MR628190
- [14] D. Louie, B.S. Rajput, Support and seminorm integrability theorems for r-semistable probability measures on LCTVS. In: Probability Theory on Vector Spaces II. Proceedings, Błazejewko, 1979, p. 179-195. Lecture Notes in Math., t. 828, Berlin-Heidelberg-New York, Springer, 1980. Zbl0458.60007MR611718
- [15] D. Louie, B.S. Rajput, A. Tortrat, Une loi de zéro-un pour une classe de mesures sur les groupes. Ann. Inst. H. Poincaré, t. 17, 1981, p. 331-335. Zbl0467.60035MR644350
- [16] A. Łuczak, Operator semi-stable probability measures on RN. Coll. Math., t. 45, 1981, p. 287-300. Zbl0501.60022
- [17] J.W. Neuberger, Quasi-analytic semigroup of bounded linear transformations.J. London Math. Soc., t. 7, 1973, p. 259-264. Zbl0269.47023MR336444
- [18] H.H. Schaefer, Banach Lattices and Positive Operators, Berlin-Heidelberg-New York, Springer, 1974. Zbl0296.47023MR423039
- [19] M. Sharpe, Operator-stable probability distributions on vector groups. Trans. Amer. Math. Soc., t. 136, 1969, p. 51-65. Zbl0192.53603MR238365
- [20] E. Siebert, Diffuse and discrete convolution semigroups of probability measures on topological groups. Rendiconti di Mathematica Roma (2), t. 1, Ser. VII, 1981, p. 219-236. Zbl0478.60022MR632889
- [21] E. Siebert, Supports of holomorphic convolution semigroups and densities of symmetric convolution semigroups on a locally compact group. Arch. Math., t. 36, 1981, p. 423-433. Zbl0443.60009MR629273
- [22] E. Siebert, Holomorphy of convolution semigroups. Manuscript, 1982.
- [23] A. Tortrat, Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non). In: Aspects Statistiques et Aspects Physiques des Processus Gaussiens. Colloque de Saint-Flour, 1980, p. 513-561, Publications duC. N. R. S. Zbl0523.60011MR716547
- [24] A. Tortrat, Lois des zéro-un et lois semi-stables dans un groupe. In: Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 452-466. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0514.60014MR669079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.