Semistable convolution semigroups on measurable and topological groups

Eberhard Siebert

Annales de l'I.H.P. Probabilités et statistiques (1984)

  • Volume: 20, Issue: 2, page 147-164
  • ISSN: 0246-0203

How to cite

top

Siebert, Eberhard. "Semistable convolution semigroups on measurable and topological groups." Annales de l'I.H.P. Probabilités et statistiques 20.2 (1984): 147-164. <http://eudml.org/doc/77229>.

@article{Siebert1984,
author = {Siebert, Eberhard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {holomorphicity; Semistable probability measures; operator-semistable laws; convolution semigroup; quasianalyticity},
language = {eng},
number = {2},
pages = {147-164},
publisher = {Gauthier-Villars},
title = {Semistable convolution semigroups on measurable and topological groups},
url = {http://eudml.org/doc/77229},
volume = {20},
year = {1984},
}

TY - JOUR
AU - Siebert, Eberhard
TI - Semistable convolution semigroups on measurable and topological groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1984
PB - Gauthier-Villars
VL - 20
IS - 2
SP - 147
EP - 164
LA - eng
KW - holomorphicity; Semistable probability measures; operator-semistable laws; convolution semigroup; quasianalyticity
UR - http://eudml.org/doc/77229
ER -

References

top
  1. [1] T. Byczkowski, Zero-one laws for Gaussian measures on metric abelian groups. Studia Math., t. 69, 1980, p. 159-189. Zbl0478.60020MR604349
  2. [2] D.M. Chung, B.S. Rajput, A. Tortrat, Semistable laws on topological vector spaces.Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 60, 1982, p. 209-218. Zbl0468.60006MR663902
  3. [3] W. Hazod, Stable probabilities on locally compact groups. In : Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 183-208. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0492.60010MR669068
  4. [4] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Berlin-Göttingen-Heidelberg-New York, Springer, 1963. Zbl0115.10603
  5. [5] H. Heyer, Probability Measures on Locally Compact Groups, Berlin-Heidelberg-New York, Springer, 1977. Zbl0376.60002MR501241
  6. [6] E. Hille, R.S. Phillips, Functional Analysis andSemigroups. Amer. Math. Soc. Colloquium Publications, t. 31, Rev. ed. Providence, R. I., Amer. Math. Soc., 1957. Zbl0078.10004MR89373
  7. [7] W.N. Hudson, Operator-stable distributions and stable marginals.J. Multivariate Anal., t. 10, 1980, p. 26-37. Zbl0418.60025MR569794
  8. [8] R. Jajte, Semi-stable probability measures on RN. Studia Math., t. 61, 1977, p. 29- 39. Zbl0365.60017MR436263
  9. [9] A. Janssen, Zulässige Translationen von Faltungshalbgruppen. Dissertation, Dortmund, 1979. Zbl0448.28010
  10. [10] A. Janssen, Zero-one laws for infinitely divisible probability measures on groups.Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 60, 1982, p. 119-138. Zbl0468.60013MR661761
  11. [11] A. Janssen, Some zero-one laws for semistable and self-decomposable measures on locally convex spaces. In: Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 236-246. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0487.60035MR669070
  12. [12] Z.J. Jurek, On stability of probability measures in Euclidean spaces. In : Probability Theory on Vector Spaces II. Proceedings, Błazejewko, 1979, p. 129-145. Lecture Notes in Math., t. 828, Berlin-Heidelberg-New York, Springer, 1980. Zbl0442.60023MR611714
  13. [13] W. Krakowiak, Operator semi-stable probability measures on Banach spaces. Coll. Math., t. 43, 1980, p. 351-363. Zbl0465.60007MR628190
  14. [14] D. Louie, B.S. Rajput, Support and seminorm integrability theorems for r-semistable probability measures on LCTVS. In: Probability Theory on Vector Spaces II. Proceedings, Błazejewko, 1979, p. 179-195. Lecture Notes in Math., t. 828, Berlin-Heidelberg-New York, Springer, 1980. Zbl0458.60007MR611718
  15. [15] D. Louie, B.S. Rajput, A. Tortrat, Une loi de zéro-un pour une classe de mesures sur les groupes. Ann. Inst. H. Poincaré, t. 17, 1981, p. 331-335. Zbl0467.60035MR644350
  16. [16] A. Łuczak, Operator semi-stable probability measures on RN. Coll. Math., t. 45, 1981, p. 287-300. Zbl0501.60022
  17. [17] J.W. Neuberger, Quasi-analytic semigroup of bounded linear transformations.J. London Math. Soc., t. 7, 1973, p. 259-264. Zbl0269.47023MR336444
  18. [18] H.H. Schaefer, Banach Lattices and Positive Operators, Berlin-Heidelberg-New York, Springer, 1974. Zbl0296.47023MR423039
  19. [19] M. Sharpe, Operator-stable probability distributions on vector groups. Trans. Amer. Math. Soc., t. 136, 1969, p. 51-65. Zbl0192.53603MR238365
  20. [20] E. Siebert, Diffuse and discrete convolution semigroups of probability measures on topological groups. Rendiconti di Mathematica Roma (2), t. 1, Ser. VII, 1981, p. 219-236. Zbl0478.60022MR632889
  21. [21] E. Siebert, Supports of holomorphic convolution semigroups and densities of symmetric convolution semigroups on a locally compact group. Arch. Math., t. 36, 1981, p. 423-433. Zbl0443.60009MR629273
  22. [22] E. Siebert, Holomorphy of convolution semigroups. Manuscript, 1982. 
  23. [23] A. Tortrat, Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non). In: Aspects Statistiques et Aspects Physiques des Processus Gaussiens. Colloque de Saint-Flour, 1980, p. 513-561, Publications duC. N. R. S. Zbl0523.60011MR716547
  24. [24] A. Tortrat, Lois des zéro-un et lois semi-stables dans un groupe. In: Probability Measures on Groups. Proceedings, Oberwolfach, 1981, p. 452-466. Lecture Notes in Math., t. 928, Berlin-Heidelberg-New York, Springer, 1982. Zbl0514.60014MR669079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.