G-convergence of generators and weak convergence of diffusions

R. Bafico; G. Pistone

Annales de l'I.H.P. Probabilités et statistiques (1985)

  • Volume: 21, Issue: 1, page 1-13
  • ISSN: 0246-0203

How to cite


Bafico, R., and Pistone, G.. "G-convergence of generators and weak convergence of diffusions." Annales de l'I.H.P. Probabilités et statistiques 21.1 (1985): 1-13. <http://eudml.org/doc/77245>.

author = {Bafico, R., Pistone, G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {weak convergence; non-degenerate diffusions},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Gauthier-Villars},
title = {G-convergence of generators and weak convergence of diffusions},
url = {http://eudml.org/doc/77245},
volume = {21},
year = {1985},

AU - Bafico, R.
AU - Pistone, G.
TI - G-convergence of generators and weak convergence of diffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1985
PB - Gauthier-Villars
VL - 21
IS - 1
SP - 1
EP - 13
LA - eng
KW - weak convergence; non-degenerate diffusions
UR - http://eudml.org/doc/77245
ER -


  1. [1] D. Aldous, Stopping Times and Tightness, Ann. of Proba., t. 6, 1978, p. 335-340. Zbl0391.60007MR474446
  2. [2] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  3. [3] A. Bensoussan, J.L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Bordas (Dunod), Paris, 1978. Zbl0411.49002MR513618
  4. [4] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structure, North-Holland, New York, 1978. Zbl0404.35001MR503330
  5. [5] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
  6. [6] M. Chicco, Solvability of the Dirichelet Problem in H2,p(Ω) for a Class of Linear Second Order Elliptic Partial Differential Equations. Bollettino UMI, t. 4, 1971, p. 374-387. Zbl0215.45406MR298209
  7. [7] E. De GIORGI, S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Bollettino UMI, t. 8, 1973, p. 391-411. Zbl0274.35002MR348255
  8. [8] A. Friedmann, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975. Zbl0323.60056MR494490
  9. [9] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
  10. [10] N.V. Krylov, Certain Bounds on the Density of the Distribution of Stochastic Integrals, Izv. Akad. Nauk., t. 38, 1974, p. 228-248. Zbl0293.60049
  11. [11] O.A. Ladizenskaja, V.A. Solonnikov, N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, 1968. Zbl0174.15403
  12. [12] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et Applications, Vol. 3, Dunod, Paris, 1968. Zbl0197.06701MR291887
  13. [13] J.L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961. Zbl0098.31101MR153974
  14. [14] M. Métivier, Sufficient Conditions for Tightness and Weak Convergence of a Sequence of Processes, University of Minnesota, Minneapolis. 
  15. [15] N.G. Meyers, An Lp-estimate for the Gradient of Solutions of Second Order Elliptic Divergence Equation, Ann. Scuola Normale Superiore Pisa, t. 17, 1963, p. 189-206. Zbl0127.31904MR159110
  16. [16] R. Rebolledo, La méthode des martingales appliquée à l'étude de la convergence en loi de processus, Bull. Soc. Mat. France mémoire, t. 62, 1979. Zbl0425.60036
  17. [17] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi alla equazione del calore, Ann. Scuola Norm. Sup. Pisa, t. 21, 1967, p. 657-699. Zbl0153.42103MR225015
  18. [18] S. Spagnolo, Sulla convergenza di soluzioni di equazioni ellittiche e paraboliche, Ann. Scuola Norm. Sup. Pisa, t. 22, 1968, p. 571-597. Zbl0174.42101MR240443
  19. [19] D.W. Strook, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, New York, 1979. Zbl0426.60069MR532498
  20. [20] D.W. Strook, S.R.S. Varadhan, Diffusion Processes with continuous coefficients I, II, Comm. Pure Appl. Math., t. 24, 1969, p. 345-400, p. 479-530. Zbl0175.44802MR253426
  21. [21] A.K. Zvonkin, A transformation of the phase space of a Diffusion Process that Removes the Drift, Math. Sbornik, t. 93, 1974, p. 135, (English transl., Math. USSR Sbornik, t. 22, 1974, p. 129-145). Zbl0291.60036MR336813

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.