Additive and superadditive local theorems

R. Émilion

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 1, page 19-36
  • ISSN: 0246-0203

How to cite

top

Émilion, R.. "Additive and superadditive local theorems." Annales de l'I.H.P. Probabilités et statistiques 22.1 (1986): 19-36. <http://eudml.org/doc/77267>.

@article{Émilion1986,
author = {Émilion, R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {additive process; differentiation of integrals; semigroup of linear operators; local ergodic theorem},
language = {eng},
number = {1},
pages = {19-36},
publisher = {Gauthier-Villars},
title = {Additive and superadditive local theorems},
url = {http://eudml.org/doc/77267},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Émilion, R.
TI - Additive and superadditive local theorems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 1
SP - 19
EP - 36
LA - eng
KW - additive process; differentiation of integrals; semigroup of linear operators; local ergodic theorem
UR - http://eudml.org/doc/77267
ER -

References

top
  1. [0] M.A. Akcoglu and A. Brunel, Contractions on L1-spaces. Trans. Amer. Math. Soc., t. 155, 1971, p. 315-325. Zbl0223.47005MR276439
  2. [1] M.A. Akcoglu and R.V. Chacon, A local ratio theorem. Canad. J. Math., t. 22, 1970, p. 545-552. Zbl0201.06603MR264031
  3. [2] M.A. Akcoglu and A. Del-Junco, Differentiation of n-dimensional additive processes. Canad. J. Math., t. 33, n° 3, 1981, p. 749-768. Zbl0477.47012MR627654
  4. [3] M.A. Akcoglu and U. Krengel, Differentiation of additive processes. Math. Z., t. 163, 1978, p. 199-210. Zbl0379.60073MR512474
  5. [4] M.A. Akcoglu and L. Sucheston, A superadditive ratio theorem. Z. Wahrs. verw. Gebiete, t. 44, 1978, p. 268-278. Zbl0386.60045MR509202
  6. [5] A. Brunel, Théorème ergodique ponctuel pour un semi-groupe commutatif finement engendré de contractions de L1. Ann. Inst. Henri Poincaré. Vol. IX, n° 4, 1973, p. 327-343. Zbl0272.47007MR344415
  7. [6] R.V. Chacon and U. Krengel, Linear modulus of a linear operator. Proc. Amer. Math. Soc., t. 15, 1964, p. 553-559. Zbl0168.11701MR164244
  8. [7] N. Dunford and J.T. Schwartz, Linear Operators, Vol. I. Interscience, 1958. Zbl0084.10402MR117523
  9. [8] R. Émilion, Convergence locale des processus sur-additifs dans Lp. C. R. Acad. Sc. Paris, t. 295, 15 novembre 1982, Série I, p. 547-549. Zbl0507.60023MR685021
  10. [9] R. Émilion, Continuity at 0 of semigroups of L 1 and differentiation of additive processes (to appear). Ann. Inst. Henri Poincaré. Zbl0585.60046
  11. [10] R. Émilion and B. Hachem, Un théorème ergodique local sur-additif. C. R. Acad. Sc. Paris, t. 294, 8 mars 1982, série I, p. 337-340. Zbl0484.60026MR658404
  12. [11] D. Feyel, Sur une classe remarquable de processus abéliens. Math. Z. (to appear). 
  13. [12] D. Feyel, Convergence locale des processus sur-abéliens et sur-additives. C. R. Acad. Sc. Paris, t. 295, 1982, Série I, p. 301-303. Zbl0508.60016MR681602
  14. [13] S.A. Mcgrath, Some ergodic theorems for commuting operators. Stud. Math., t. 70, 1980, p. 153-160. Zbl0509.47008MR642190
  15. [14] C. Kipnis, Majoration de semi-groupes de contractions de L1 et applications. Ann. Inst. Henri Poincaré, Vol. X, n° 4, 1974, p. 369-384. Zbl0324.47004MR372157
  16. [15] U. Krengel, A local ergodic theorem. Invent. Math., t. 6, 1969, p. 329-333. Zbl0165.37402MR241602
  17. [16] U. Krengel, Recent progress in ergodic theorem. Soc. Math. de France. Astérique, t. 50, 1977, p. 151-192. Zbl0376.28016MR486418
  18. [17] Y. Kubokawa, Ergodic theorems for contraction semigroups. J. Math. Soc. Japan, t. 27, 1975, p. 184-193. Zbl0299.47007MR397444
  19. [18] M. Lin, On local ergodic convergence of semigroups and additive processes. Israel J. Math., t. 42, 1982, p. 300-308. Zbl0545.47016MR682314
  20. [19] R. Sato, On a local ergodic theorem. Stud. Math., t. LVIII, 1976, p. 1-5. Zbl0344.47005MR422581
  21. [20] R. Sato, On local ergodic theorems for positive semigroups. Studs. Math., t. LXIII, 1978, p. 45-55. Zbl0391.47022MR508881
  22. [21] R.T. Terrell, Local ergodic theorems for n-parameters semigroups of operators. Lecture Notes in Math., n° 160, 1970, p. 262-278, Springer-Verlag. Zbl0204.45406MR268357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.