Asymptotic expansions of the invariant density of a Markov process with a small parameter
Annales de l'I.H.P. Probabilités et statistiques (1988)
- Volume: 24, Issue: 3, page 403-424
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMikami, Toshio. "Asymptotic expansions of the invariant density of a Markov process with a small parameter." Annales de l'I.H.P. Probabilités et statistiques 24.3 (1988): 403-424. <http://eudml.org/doc/77333>.
@article{Mikami1988,
	author = {Mikami, Toshio},
	journal = {Annales de l'I.H.P. Probabilités et statistiques},
	keywords = {asymptotic expansion; invariant density of Markov processes; small random perturbations of dynamical systems; Freidlin-Wentzell quasi potential},
	language = {eng},
	number = {3},
	pages = {403-424},
	publisher = {Gauthier-Villars},
	title = {Asymptotic expansions of the invariant density of a Markov process with a small parameter},
	url = {http://eudml.org/doc/77333},
	volume = {24},
	year = {1988},
}
TY  - JOUR
AU  - Mikami, Toshio
TI  - Asymptotic expansions of the invariant density of a Markov process with a small parameter
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1988
PB  - Gauthier-Villars
VL  - 24
IS  - 3
SP  - 403
EP  - 424
LA  - eng
KW  - asymptotic expansion; invariant density of Markov processes; small random perturbations of dynamical systems; Freidlin-Wentzell quasi potential
UR  - http://eudml.org/doc/77333
ER  - 
References
top- [1] M.V. Day, On the Asymptotic Relation Between Equilibrium Density and Exit Measure in the Exit Problem, Stochastics, Vol. 2, 1984, pp. 303-330. Zbl0526.60052MR749379
- [2] M.V. Day, Recent Progress on the Small Parameters Exit Problem, Stochastics, Vol. 20, 1987, pp. 121-150. Zbl0612.60067MR877726
- [3] M.V. Day, Localization Results for Densities Associated with Stable Small-Noise Diffusions, preprint. Zbl0621.60061MR931508
- [4] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. Zbl0522.60055MR722136
- [5] R.Z. Has'minskii, Stochastic Stability of Differential Equations, SIJTHOFF and NOORDHOFF Eds., Alphen ann den Rijn, the Netherlands, 1980. MR600653
- [6] S. Watanabe, Analysis of Wiener Functionals (Malliavin Calculus) and its Applications to Heat Kernel, The Annals of Probability, Vol. 15, 1987, No. 1, pp. 1-39. Zbl0633.60077MR877589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 