Asymptotic expansions of the invariant density of a Markov process with a small parameter

Toshio Mikami

Annales de l'I.H.P. Probabilités et statistiques (1988)

  • Volume: 24, Issue: 3, page 403-424
  • ISSN: 0246-0203

How to cite

top

Mikami, Toshio. "Asymptotic expansions of the invariant density of a Markov process with a small parameter." Annales de l'I.H.P. Probabilités et statistiques 24.3 (1988): 403-424. <http://eudml.org/doc/77333>.

@article{Mikami1988,
author = {Mikami, Toshio},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {asymptotic expansion; invariant density of Markov processes; small random perturbations of dynamical systems; Freidlin-Wentzell quasi potential},
language = {eng},
number = {3},
pages = {403-424},
publisher = {Gauthier-Villars},
title = {Asymptotic expansions of the invariant density of a Markov process with a small parameter},
url = {http://eudml.org/doc/77333},
volume = {24},
year = {1988},
}

TY - JOUR
AU - Mikami, Toshio
TI - Asymptotic expansions of the invariant density of a Markov process with a small parameter
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 3
SP - 403
EP - 424
LA - eng
KW - asymptotic expansion; invariant density of Markov processes; small random perturbations of dynamical systems; Freidlin-Wentzell quasi potential
UR - http://eudml.org/doc/77333
ER -

References

top
  1. [1] M.V. Day, On the Asymptotic Relation Between Equilibrium Density and Exit Measure in the Exit Problem, Stochastics, Vol. 2, 1984, pp. 303-330. Zbl0526.60052MR749379
  2. [2] M.V. Day, Recent Progress on the Small Parameters Exit Problem, Stochastics, Vol. 20, 1987, pp. 121-150. Zbl0612.60067MR877726
  3. [3] M.V. Day, Localization Results for Densities Associated with Stable Small-Noise Diffusions, preprint. Zbl0621.60061MR931508
  4. [4] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. Zbl0522.60055MR722136
  5. [5] R.Z. Has'minskii, Stochastic Stability of Differential Equations, SIJTHOFF and NOORDHOFF Eds., Alphen ann den Rijn, the Netherlands, 1980. MR600653
  6. [6] S. Watanabe, Analysis of Wiener Functionals (Malliavin Calculus) and its Applications to Heat Kernel, The Annals of Probability, Vol. 15, 1987, No. 1, pp. 1-39. Zbl0633.60077MR877589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.