On asymptotic minimaxity of the adaptative kernel estimate of a density function
Jean Bretagnolle; Jan Mielniczuk
Annales de l'I.H.P. Probabilités et statistiques (1989)
- Volume: 25, Issue: 2, page 143-152
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBretagnolle, Jean, and Mielniczuk, Jan. "On asymptotic minimaxity of the adaptative kernel estimate of a density function." Annales de l'I.H.P. Probabilités et statistiques 25.2 (1989): 143-152. <http://eudml.org/doc/77343>.
@article{Bretagnolle1989,
author = {Bretagnolle, Jean, Mielniczuk, Jan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {mean square error; minimax estimate; adaptative kernel estimate; data dependent bandwidth; minimax bounds; density estimates},
language = {eng},
number = {2},
pages = {143-152},
publisher = {Gauthier-Villars},
title = {On asymptotic minimaxity of the adaptative kernel estimate of a density function},
url = {http://eudml.org/doc/77343},
volume = {25},
year = {1989},
}
TY - JOUR
AU - Bretagnolle, Jean
AU - Mielniczuk, Jan
TI - On asymptotic minimaxity of the adaptative kernel estimate of a density function
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1989
PB - Gauthier-Villars
VL - 25
IS - 2
SP - 143
EP - 152
LA - eng
KW - mean square error; minimax estimate; adaptative kernel estimate; data dependent bandwidth; minimax bounds; density estimates
UR - http://eudml.org/doc/77343
ER -
References
top- [1] I.S. Abramson, On Bandwidth Variation in Kernel Estimates a Square Root Law, Ann. Stat., Vol. 10, 1982, pp. 1217-1223. Zbl0507.62040MR673656
- [2] G. Benett, Probability Inequalities for the Sum of Independent Random Variables, J. Amer. Statist., Vol. 57, 1962, pp. 33-45. Zbl0104.11905
- [3] J. Bretagnolle and C. Huber, Estimation des densités : risque minimax, Z. Wachrscheinlichkeitstheorie und verw. Gebiete, Vol. 47, 1979, pp. 113-137. Zbl0413.62024MR523165
- [4] R.H. Farrell, On the Best Obtainable Rates of Convergence in Estimation of a Density Function at a Point, Ann. Math. Statist., Vol. 43, 1972, pp. 170-180. Zbl0238.62049MR300360
- [5] L. Gajek, On Improving Density Functions Wchich are not Bona Fide Functions, Ann. Statist., Vol. 14, 1986, pp. 1612-1618. Zbl0623.62034MR868324
- [6] I.A. Ibragimov and R.Z. Hasminskii, Statistical Estimation, Asymptotic Theory, Springer, 1981. Zbl0467.62026MR620321
- [7] E. Parzen, On Estimation of Probability Density and Mode, Ann. Math. Statist., Vol. 33, 1962, pp. 1065-1076. Zbl0116.11302MR143282
- [8] J. Sacks and W. Strawderman, Improvements on Linear Minimax Estimates. In Statistical Decision Theory and Related Topics 3, Vol. 2, S. S. Gupta and J. O. Berger Eds., New York, Academic Press, 1982, pp. 287-304. Zbl0574.62044MR705320
- [9] J. Sacks and D. Ylvisacker, Asymptotically Optimal Kernels for Density Estimation at a Point, Ann. Statist., Vol. 9, 1981, pp. 334-346. Zbl0458.62031MR606617
- [10] G.R. Tarell and D.W. Scott, On Improving Convergence Rates for Nonnegative Kernel Density Estimators, Ann. Statist., Vol. 8, 1980, pp. 1160-1163. Zbl0459.62031MR585714
- [11] M. Woodroofe, On Chosing a Delta Sequence, Ann. Math. Statist., Vol. 41, 1970, pp. 1665-1671. Zbl0229.62022MR270515
- [12] L.D. Brown and R.H. Farrell, A Lower Bound for the Risk in Estimating the Value of a Probability Density, Preprint Math. DtCornell University, 1987. MR1134513
- [13] D.L. Donoho and R.L. Liu, Geometrizing Rates of Convergence, III, Preprint Dt of Statistics, University of California, 1987. Zbl0754.62028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.