Factorising brownian motion at two boundaries ; an example

Paul McGill

Annales de l'I.H.P. Probabilités et statistiques (1989)

  • Volume: 25, Issue: 4, page 517-531
  • ISSN: 0246-0203

How to cite

top

McGill, Paul. "Factorising brownian motion at two boundaries ; an example." Annales de l'I.H.P. Probabilités et statistiques 25.4 (1989): 517-531. <http://eudml.org/doc/77363>.

@article{McGill1989,
author = {McGill, Paul},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {factorisation; time-changing a Brownian motion; additive functional; complex martingale},
language = {eng},
number = {4},
pages = {517-531},
publisher = {Gauthier-Villars},
title = {Factorising brownian motion at two boundaries ; an example},
url = {http://eudml.org/doc/77363},
volume = {25},
year = {1989},
}

TY - JOUR
AU - McGill, Paul
TI - Factorising brownian motion at two boundaries ; an example
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1989
PB - Gauthier-Villars
VL - 25
IS - 4
SP - 517
EP - 531
LA - eng
KW - factorisation; time-changing a Brownian motion; additive functional; complex martingale
UR - http://eudml.org/doc/77363
ER -

References

top
  1. [1] N. Baker, Some Integral Equalities in Wiener-Hopf Theory. Stochastic Analysis and Applications, Springer Lect. Notes, No. 1095, 1984, pp. 169-186. Zbl0557.60071MR777521
  2. [2] C. Dellacherie and P.A. Meyer, Probabilités et Potentiel, Théorie des Martingales, Hermann, Paris, 1980. Zbl0464.60001MR566768
  3. [3] H. Dym and H.P. Mckean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, London and New York, 1976. Zbl0327.60029MR448523
  4. [4] A. Erdélyi, The Bateman Manuscript Project. Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953. Zbl0051.30303
  5. [5] A. Erdélyi, The Bateman Manuscript Project. Integral Transforms, Vol. 1, McGraw-Hill, New York, 1953. 
  6. [6] K. Ito and H.P. Mckean, Diffusion Processes and Their Sample Paths, Springer Verlag, Berlin-Heidelberg-New York, 1965. Zbl0127.09503
  7. [7] R.R. London, H.P. Mckean, L.C.G. Rogers and D. Williams, A Martingale Approach to Some Wiener-Hopf Problems I, Séminaire de Probabilités XVI; Springer Lecture Notes, No. 920, 1982, pp. 41-67. Zbl0485.60072MR658671
  8. [8] B. Maisonneuve, Exit Systems, Ann. Prob., Vol. 3, 1975, pp. 399-411. Zbl0311.60047MR400417
  9. [9] P. Mcgill, Some Eigenvalue Identities for Brownian Motion, Math. Proc. Camb. Phil. Soc., 1989, 105, pp. 587-596. Zbl0678.60067MR985695
  10. [10] L.C.G. Rogers and D. Williams, Time Substitution Based on Fluctuating Assitive Functionals (Wiener-Hopf Factorisation for Infinitesimal Generators), Séminaire de Probabilités XIV ; Springer Lect. Notes, No. 784, 1980, pp. 324-331. Zbl0442.60075MR580139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.