Reformulation et extension de certains théorèmes ergodiques

Jean-Pierre Roth

Annales de l'I.H.P. Probabilités et statistiques (1990)

  • Volume: 26, Issue: 3, page 437-450
  • ISSN: 0246-0203

How to cite

top

Roth, Jean-Pierre. "Reformulation et extension de certains théorèmes ergodiques." Annales de l'I.H.P. Probabilités et statistiques 26.3 (1990): 437-450. <http://eudml.org/doc/77388>.

@article{Roth1990,
author = {Roth, Jean-Pierre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Cesàro means; maximal lemma; Chacon-Ornstein theorem; Dunford-Schwartz theorem; stochastic ergodic theorem},
language = {fre},
number = {3},
pages = {437-450},
publisher = {Gauthier-Villars},
title = {Reformulation et extension de certains théorèmes ergodiques},
url = {http://eudml.org/doc/77388},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Roth, Jean-Pierre
TI - Reformulation et extension de certains théorèmes ergodiques
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 3
SP - 437
EP - 450
LA - fre
KW - Cesàro means; maximal lemma; Chacon-Ornstein theorem; Dunford-Schwartz theorem; stochastic ergodic theorem
UR - http://eudml.org/doc/77388
ER -

References

top
  1. [1] M.A. Akcoglu, L. Sucheston, On Ergodic Theory and Truncated Limits in Banach Lattices, Proceedings of the 1983 Oberwolfach Measure Theory Conférence, Lect. Notes Math., vol. 1089, 241-262, 1984, Springer-Verlag, Berlin. Zbl0579.47005MR786702
  2. [2] M.A. Akcoglu, L. Sucheston, An Ergodic Theorem on Banach Lattices, Israël J. Math., vol. 51, 1985, 208-222. Zbl0592.47005MR804484
  3. [3] Ph. Benilan, Equations d'évolution dans un espace de Banach quelconque et applications, 1972, Thèse Orsay. 
  4. [4] A. Brunel, Sur un lemme ergodique voisin du lemme de E. Hopf et sur une de ses applications, C.R. Acad. Sci. Paris, t. 256, 1963, 5481-5484. Zbl0117.10402MR152633
  5. [5] R.V. Chacon, D.S. Ornstein, A general ergodic theorem, Illinois J.M. t. 4, 1960, 153-160. Zbl0134.12102MR110954
  6. [6] N. Dunford, J.T. Schwartz, Convergence almost everywhere of operator averages, J. Rat. Mech. Anal., 1956, T. 5, 129-178. Zbl0075.12102MR77090
  7. [7] D. Feyel, Espaces complètement réticulés de pseudo-noyaux. Applications aux résolvantes et aux semi-groupes complexes, Sém. Théorie du potentiel, Paris, N°3, Lect. Notes Math., vol. 681, 54-80, 1978, Springer-Verlag, Berlin. Zbl0399.47034MR521778
  8. [8] D. Feyel, Théorèmes de convergence presque sûre, existence de semi-groupes, Adv. Math., t. 34, 1979, 154-162. Zbl0425.60005MR549782
  9. [9] A. Garsia, Topics in almost everywhere convergence, Lect. Adv. Math.4, 1970, Markham Publishing Company. Zbl0198.38401MR261253
  10. [10] U. Krengel, Ergodic theorems, Studies Math.6, de Gruyter, 1985. Zbl0575.28009MR797411

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.