Generalized Levy representation of norms and isometric embeddings into L p -spaces

Alexander L. Koldobsky

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 3, page 335-353
  • ISSN: 0246-0203

How to cite

top

Koldobsky, Alexander L.. "Generalized Levy representation of norms and isometric embeddings into $L_p$-spaces." Annales de l'I.H.P. Probabilités et statistiques 28.3 (1992): 335-353. <http://eudml.org/doc/77435>.

@article{Koldobsky1992,
author = {Koldobsky, Alexander L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Fourier transform; criteria for isometric embeddability of Banach spaces into spaces; distribution; representation},
language = {eng},
number = {3},
pages = {335-353},
publisher = {Gauthier-Villars},
title = {Generalized Levy representation of norms and isometric embeddings into $L_p$-spaces},
url = {http://eudml.org/doc/77435},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Koldobsky, Alexander L.
TI - Generalized Levy representation of norms and isometric embeddings into $L_p$-spaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 3
SP - 335
EP - 353
LA - eng
KW - Fourier transform; criteria for isometric embeddability of Banach spaces into spaces; distribution; representation
UR - http://eudml.org/doc/77435
ER -

References

top
  1. [1] J. Bretagnolle, D. Dacunha-Castelle and J.L. Krivine, Lois stables et spaces Lp, Ann. Inst. H. Poincaré. Ser. B., Vol. 2, 1966, pp. 231-259. Zbl0139.33501MR203757
  2. [2] L. Dor, Potentials and Isometric Embeddings in L1, Israel J. Math., Vol. 24, 1976, pp. 260-268. Zbl0345.46018MR417756
  3. [3] M.V. Fedoryuck, Assymptotics. Integrals, series, Nauka, Moscow, 1987. 
  4. [4] T.S. Ferguson, A Representation of the Symmetric Bivariate Cauchy Distribution, Ann. Math. Stat., Vol. 33, 1962, pp. 1256-1266. Zbl0111.33402MR143281
  5. [5] M. Frechet, Sur la définition axiomatique d'une classe d'espaces vectoriel distances applicables vectoriellement sur l'espace de Hilbert, Ann. Math., Vol. 36, 1935, pp. 705- 718. Zbl0012.30701MR1503246
  6. [6] I.M. Gelfand and G.E. Shilov, Generalized functions I, Fizmatgiz, Moscow, 1959. 
  7. [7] I.M. Gelfand, M.I. Graev and N.Ya. Vilenkin, Generalized Functions5, Academic Press, New York, 1966. Zbl0144.17202
  8. [8] E.A. Gorin and A.L. Koldobsky, On Potentials of Measures in Banach Spaces, Siberian Math. J., Vol. 28, 1987, pp. 46-58. Zbl0637.46042MR886854
  9. [9] R. Grzaslewicz, Plane Sections of the Unit Ball of Lp, Acta Math. Hung., Vol. 52, 1988, pp. 219-225. Zbl0683.52004MR991856
  10. [10] C.S. Herz, A Class of Negative Definite Functions, Proc. Am. Math. Soc., Vol. 14, 1963, pp. 670-676. Zbl0178.54102MR158251
  11. [11] W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Memoires of the Am. Math. Soc., Vol. 217, 1979, 298 p. Zbl0421.46023MR527010
  12. [12] P. Jordan and J. Von Neumann, On Inner Products Linear Metric Spaces, Ann. Math., Vol. 36, 1935, pp. 719-723. Zbl61.0435.05JFM61.0435.05
  13. [13] M. Kanter, The Lp-norm of Sums of Translates of a Function, Trans. Am. Math. Soc., Vol. 179, 1973, pp. 35-47. Zbl0271.43007MR361617
  14. [14] A.L. Koldobsky, Schoenberg's Problem on Positive Definite Functions, Algebra & Analysis, Leningrad Math. J., Vol. 3, No. 3, 1991, pp. 78-85. Zbl0791.60012
  15. [15] A.L. Koldobsky, A Formula for the Fourier Transform of Maximum Dependent Functions, preprint. Zbl1055.52003
  16. [16] A.L. Koldobsky, The Fourier Transform Technique for Convolution Equations in Infinite Dimensional lq-spaces, Math. Ann., Vol. 291, 1991, pp. 403-407. Zbl0725.47015MR1133339
  17. [17] A.L. Koldosky, Convolution Equations in Certain Banach Spaces, Proc. Am. Math. Soc., Vol. 111, 1991, pp. 755-765. Zbl0748.46017
  18. [18] J.L. Krivine, Plongment des espaces normes dans les Lp pour p &gt; 2, C. R. Acad. Sci.Paris, T. 261, 1965, pp. 4307-4310. Zbl0141.12004MR194870
  19. [19] Yu.G. Kuritsyn, Multidimensional Versions and Two Schoenberg's Problems, Stability Problems for Stochastic Models, Moscow, 1989, pp. 72-79 (Russian). 
  20. [20] P. Levy, Théorie de l'addition de variable aléatoires, Gauthier-Villars, Paris, 1937. Zbl0016.17003JFM63.0490.04
  21. [21] W. Linde, Infinitely Divisible and Stable Measures on Banach Spaces, Teubner-Texte für Mathematik, Vol. 58, Teubner, Leipgiz, 1983. Zbl0526.28011MR758255
  22. [22] W. Linde, Moments of Measures on Banach Spaces, Math. Ann., Vol. 258, 1982, pp. 277-287. Zbl0465.46036MR649200
  23. [23] J. Lindenstrauss, On the Extension of Operators with Finite DimensionalRange,Illinois J. Math., Vol. 8, 1964, pp. 488-499. Zbl0132.09803MR169062
  24. [24] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lect. Notes Math., Vol. 338, 1973. Zbl0259.46011MR415253
  25. [25] J. Misiewicz, On Norm Dependent Positive Definite Functions, Bull. Acad. Sci. Georgian SSR, Vol. 130, 1988, pp. 253-256 (Russian). Zbl0655.42010MR979262
  26. [26] J. Misiewicz, Positive Definite Functions on l∞, Statist. and Probab. Lett., Vol. 8, 1989, pp. 255-260. Zbl0691.60012MR1024036
  27. [27] A. Neyman, Representation of Lp-Norms and Isometric Embedding in Lp-Spaces, Israel J. Math., Vol. 48, 1984, pp. 129-138. Zbl0599.46047MR770695
  28. [28] G. Polya, On the Zeroes of an Integral Function Represented by Fourier's Integral, Messenger Math., Vol. 52, 1923, pp. 185-188. JFM49.0219.02
  29. [29] G. Polya and G. Szego, Aufgaben und lehrsatze aus der analysis, Springer-Verlag, Berlin-New York, 1964. Zbl0122.29704
  30. [30] I.J. Schoenberg, Metric Spaces and Positive Definite Functions, Trans. Am. Math. Soc., Vol. 44, 1938, pp. 522-536. Zbl0019.41502MR1501980JFM64.0617.02
  31. [31] I.J. Schoenberg, Metric Spaces and Completely Monotone Functions, Ann. Math., Vol. 39, 1938, pp. 811-841. Zbl0019.41503MR1503439JFM64.0617.03
  32. [32] V.M. Zolotarev, One-DimensionalStable Distributions, Nauka, Moscow, 1983. Zbl0523.60003MR721815
  33. [33] D. Yost, L1 Contains Every Two-Dimensional Normed Space, Ann. Polonici Math., Vol. 49, 1988, pp. 17-19. Zbl0679.46016MR985361
  34. [34] I. Aharoni, B. Maurey and B.S. Mityagin, Uniform Embeddings of Metric Spaces and of Banach Spaces into Hilbert Spaces, Israel J. Math., Vol. 52, 1985, pp. 251- 265. Zbl0596.46010MR815815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.