Comportement asymptotique du temps d'occupation du processus des sommes partielles

Jacques Akonom

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 1, page 57-81
  • ISSN: 0246-0203

How to cite

top

Akonom, Jacques. "Comportement asymptotique du temps d'occupation du processus des sommes partielles." Annales de l'I.H.P. Probabilités et statistiques 29.1 (1993): 57-81. <http://eudml.org/doc/77451>.

@article{Akonom1993,
author = {Akonom, Jacques},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {strong approximation results; occupation times; Brownian motion; local limit theorem; stationary process},
language = {fre},
number = {1},
pages = {57-81},
publisher = {Gauthier-Villars},
title = {Comportement asymptotique du temps d'occupation du processus des sommes partielles},
url = {http://eudml.org/doc/77451},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Akonom, Jacques
TI - Comportement asymptotique du temps d'occupation du processus des sommes partielles
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 57
EP - 81
LA - fre
KW - strong approximation results; occupation times; Brownian motion; local limit theorem; stationary process
UR - http://eudml.org/doc/77451
ER -

References

top
  1. [1] J. Akonom, Processus transformés d'un ARIMA ou d'un processus de Wiener. Problèmes d'estimation, Thèse, Univ. de Lille-1, 1988. 
  2. [2] A.N. Borodin, On the Character of Convergence to Brownian Local Time, Probability Theory Rel. Fields, vol. 72, (I), 1986, p. 231-250 et (II), 1986, p.251-277. Zbl0572.60078MR836277
  3. [3] L. Breiman, Probability, Reading Mass, Addison Wesley, 1968. Zbl0174.48801MR229267
  4. [4] M. Csörgö et P. Révész, Three Strong Approximations of the Local Time of a Wiener Process and Their Applications to Invariance in ColloquiaMath. Soc. Janos Bolyai, 36, Limit Theorems in Probab. and Statistics Veszprém (Hungary), 1984, p. 223-254. Zbl0567.60075MR807563
  5. [5] M. Csörgö et P. Révész, On Strong Invariance for Local Times of Partial Sums, Stochastic Processes and their Appl., vol. 20, 1985, p. 59-84. Zbl0582.60073MR805116
  6. [6] M. Csörgo et P. Révész, On the Stability of the Local Time of a Symetric Random Walk, Acta Sci. Math., vol. 48, 1985, p. 85-96. Zbl0586.60060MR810868
  7. [7] U. Einmahl, Extensions of Results of Komlós, Major and Tusnády, Multivariate Analysis, vol. 28, 1989, p. 20-68. Zbl0676.60038MR996984
  8. [8] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 2e éd., 1957. Zbl0077.12201MR88081
  9. [9] B.V. Gnedenko, Un théorème limite local pour les densités, Dokl. Akad. Nank. S.S.S.R., vol. 95, 1954. Zbl0055.36602
  10. [10] H. Kesten, An Iterated Logarithm Law for Local Time, Duke Math. J., vol. 32, 1965, p. 447-456. Zbl0132.12701MR178494
  11. [11] F. Knight, Essentials of Brownian Motion and Diffusion, Math. Surveys, vol. 18, A.M.S., 1981. Zbl0458.60002MR613983
  12. [12] Komlós, Major et Tusnády, An Approximation of Partial Sums of Independent R.V.'s and Sample D.F., Z. Wahrsch. verw. Gebiete, vol. 32, 1975, p. 111-131 et 34, 1976, 33-58. Zbl0308.60029
  13. [13] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948. Zbl0034.22603MR190953
  14. [14] P. Major, The Approximation of Partial Sums of Independent R.V.'s, Z. Wahrsch. verw. Gebiete, vol. 35, 1976, p. 213-220. Zbl0338.60031MR415743
  15. [15] H.P. Mckean, Hôlder Condition for Brownian Motion Paths, J. Math. Kyoto Univ., vol. 1, 1962, p. 195-210. Zbl0121.13101MR146902
  16. [16] E. Perkins, Weak Invariance Principles for Local Times, Z. Wahrsch. verw. Gebiete, vol. 60, 1982, p. 437-451. Zbl0465.60065MR665738
  17. [17] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York, 1975. Zbl0322.60042MR388499
  18. [18] A. Renyi, Calcul des probabilités, Dunod, Paris, 1966. Zbl0141.14702MR202161
  19. [19] P. Révész, Local Time and Invariance, Lecture Notes in Math., n° 861, Springer-Verlag, Berlin, Heidelberg, New York, 1981. Zbl0456.60029MR655268
  20. [20] P. Révész, A Strong Invariance Principle of the Local Time of R.V.'s with Continuous Distributions, Stud. Sci. Math. Hung., vol. 16, 1981, p. 219-228. Zbl0525.60041MR703659
  21. [21] H.F. Trotter, A Property of Brownian Motion Paths, Ill. J. Math., vol. 2, 1958, p. 425-433. Zbl0117.35502MR96311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.