Comportement asymptotique du temps d'occupation du processus des sommes partielles
Annales de l'I.H.P. Probabilités et statistiques (1993)
- Volume: 29, Issue: 1, page 57-81
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAkonom, Jacques. "Comportement asymptotique du temps d'occupation du processus des sommes partielles." Annales de l'I.H.P. Probabilités et statistiques 29.1 (1993): 57-81. <http://eudml.org/doc/77451>.
@article{Akonom1993,
author = {Akonom, Jacques},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {strong approximation results; occupation times; Brownian motion; local limit theorem; stationary process},
language = {fre},
number = {1},
pages = {57-81},
publisher = {Gauthier-Villars},
title = {Comportement asymptotique du temps d'occupation du processus des sommes partielles},
url = {http://eudml.org/doc/77451},
volume = {29},
year = {1993},
}
TY - JOUR
AU - Akonom, Jacques
TI - Comportement asymptotique du temps d'occupation du processus des sommes partielles
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 57
EP - 81
LA - fre
KW - strong approximation results; occupation times; Brownian motion; local limit theorem; stationary process
UR - http://eudml.org/doc/77451
ER -
References
top- [1] J. Akonom, Processus transformés d'un ARIMA ou d'un processus de Wiener. Problèmes d'estimation, Thèse, Univ. de Lille-1, 1988.
- [2] A.N. Borodin, On the Character of Convergence to Brownian Local Time, Probability Theory Rel. Fields, vol. 72, (I), 1986, p. 231-250 et (II), 1986, p.251-277. Zbl0572.60078MR836277
- [3] L. Breiman, Probability, Reading Mass, Addison Wesley, 1968. Zbl0174.48801MR229267
- [4] M. Csörgö et P. Révész, Three Strong Approximations of the Local Time of a Wiener Process and Their Applications to Invariance in ColloquiaMath. Soc. Janos Bolyai, 36, Limit Theorems in Probab. and Statistics Veszprém (Hungary), 1984, p. 223-254. Zbl0567.60075MR807563
- [5] M. Csörgö et P. Révész, On Strong Invariance for Local Times of Partial Sums, Stochastic Processes and their Appl., vol. 20, 1985, p. 59-84. Zbl0582.60073MR805116
- [6] M. Csörgo et P. Révész, On the Stability of the Local Time of a Symetric Random Walk, Acta Sci. Math., vol. 48, 1985, p. 85-96. Zbl0586.60060MR810868
- [7] U. Einmahl, Extensions of Results of Komlós, Major and Tusnády, Multivariate Analysis, vol. 28, 1989, p. 20-68. Zbl0676.60038MR996984
- [8] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 2e éd., 1957. Zbl0077.12201MR88081
- [9] B.V. Gnedenko, Un théorème limite local pour les densités, Dokl. Akad. Nank. S.S.S.R., vol. 95, 1954. Zbl0055.36602
- [10] H. Kesten, An Iterated Logarithm Law for Local Time, Duke Math. J., vol. 32, 1965, p. 447-456. Zbl0132.12701MR178494
- [11] F. Knight, Essentials of Brownian Motion and Diffusion, Math. Surveys, vol. 18, A.M.S., 1981. Zbl0458.60002MR613983
- [12] Komlós, Major et Tusnády, An Approximation of Partial Sums of Independent R.V.'s and Sample D.F., Z. Wahrsch. verw. Gebiete, vol. 32, 1975, p. 111-131 et 34, 1976, 33-58. Zbl0308.60029
- [13] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948. Zbl0034.22603MR190953
- [14] P. Major, The Approximation of Partial Sums of Independent R.V.'s, Z. Wahrsch. verw. Gebiete, vol. 35, 1976, p. 213-220. Zbl0338.60031MR415743
- [15] H.P. Mckean, Hôlder Condition for Brownian Motion Paths, J. Math. Kyoto Univ., vol. 1, 1962, p. 195-210. Zbl0121.13101MR146902
- [16] E. Perkins, Weak Invariance Principles for Local Times, Z. Wahrsch. verw. Gebiete, vol. 60, 1982, p. 437-451. Zbl0465.60065MR665738
- [17] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York, 1975. Zbl0322.60042MR388499
- [18] A. Renyi, Calcul des probabilités, Dunod, Paris, 1966. Zbl0141.14702MR202161
- [19] P. Révész, Local Time and Invariance, Lecture Notes in Math., n° 861, Springer-Verlag, Berlin, Heidelberg, New York, 1981. Zbl0456.60029MR655268
- [20] P. Révész, A Strong Invariance Principle of the Local Time of R.V.'s with Continuous Distributions, Stud. Sci. Math. Hung., vol. 16, 1981, p. 219-228. Zbl0525.60041MR703659
- [21] H.F. Trotter, A Property of Brownian Motion Paths, Ill. J. Math., vol. 2, 1958, p. 425-433. Zbl0117.35502MR96311
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.