Conditioned brownian motion in simply connected planar domains
Philip S. Griffin; Terry R. McConnell; Gregory Verchota
Annales de l'I.H.P. Probabilités et statistiques (1993)
- Volume: 29, Issue: 2, page 229-249
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGriffin, Philip S., McConnell, Terry R., and Verchota, Gregory. "Conditioned brownian motion in simply connected planar domains." Annales de l'I.H.P. Probabilités et statistiques 29.2 (1993): 229-249. <http://eudml.org/doc/77455>.
@article{Griffin1993,
author = {Griffin, Philip S., McConnell, Terry R., Verchota, Gregory},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conditioned Brownian motion; expected lifetime; positive harmonic functions; isoperimetric inequality; open mapping theorem; Poisson kernel},
language = {eng},
number = {2},
pages = {229-249},
publisher = {Gauthier-Villars},
title = {Conditioned brownian motion in simply connected planar domains},
url = {http://eudml.org/doc/77455},
volume = {29},
year = {1993},
}
TY - JOUR
AU - Griffin, Philip S.
AU - McConnell, Terry R.
AU - Verchota, Gregory
TI - Conditioned brownian motion in simply connected planar domains
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 229
EP - 249
LA - eng
KW - conditioned Brownian motion; expected lifetime; positive harmonic functions; isoperimetric inequality; open mapping theorem; Poisson kernel
UR - http://eudml.org/doc/77455
ER -
References
top- [1] C. Bandle, Isoperimetric inequalities and applications, Pitman Publishing, Boston, 1980. Zbl0436.35063MR572958
- [2] R. Bañuelos, On the estimate of Cranston and McConnell for elliptic diffusions in uniform domains, Prob. Th. Rel. Fields, Vol. 76, 1987, pp. 311-323. Zbl0611.60071MR912657
- [3] R. Bañuelos and T. Carrol, Conditional Brownian motion and hyperbolic geodesics in simply connected domains, (Preprint).
- [4] E.F. Beckenbach and T. Rado, Subharmonic functions and surfaces of negative curvature, Trans. Amer. Math. Soc., Vol. 35, 1933, pp. 662-674. Zbl0007.13001MR1501708
- [5] T. Carleman, Zur Theorie der Minimalflächen, Math Z., Vol. 9, 1921, pp. 154-160. Zbl48.0590.02MR1544458JFM48.0590.02
- [6] M. Cranston and T.R. Mcconnell, The lifetime of conditioned Brownian motion, Z. Warsch. Verw. Gebiete, Vol. 65, 1983, pp. 1-11. Zbl0506.60071MR717928
- [7] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984. Zbl0549.31001MR731258
- [8] G. Hardy J.E. Littlewood, and G. Pólya, Inequalities, 2nd Ed., Cambridge University Press, Cambridge, 1952. Zbl0047.05302MR46395
- [9] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd Ed., Dover, New York, 1976. Zbl0352.43001MR422992
- [10] P. Koosis, Introduction to Hp spaces, Cambridge University Press, Cambridge, 1980. Zbl0435.30001MR1669574
- [11] T.R. Mcconnell, A conformal inequality related to the conditional gauge theorem, Trans. Amer. Math. Soc., Vol. 318, 1990, pp. 721-733. Zbl0705.60063MR957083
- [12] S. Saks and A. Zygmund, Analytic Functions, 3rd Ed., American Elsevier Publishing Co., New York, 1971. Zbl0048.30803MR349963
- [13] T. Salisbury, A Martin boundary in the plane, Trans. Amer. Math. Soc., Vol. 293, 1986, pp. 623-642. Zbl0591.60074MR816315
- [14] W.A. Veech, A Second Course in Complex Analysis, W. A. BENJAMIN Ed., Inc., New York, 1967. Zbl0145.29901MR220903
- [15] J. Xu, The lifetime of conditioned Brownian motion in planar domains of finite area, Prob. Theory Related Fields, Vol. 87, 1991, pp. 469-487. Zbl0718.60092MR1085178
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.