Convolutional attractors of stationary sequences of random measures on compact groups

D. S. Mindlin; B. A. Rubshtein

Annales de l'I.H.P. Probabilités et statistiques (1994)

  • Volume: 30, Issue: 2, page 213-233
  • ISSN: 0246-0203

How to cite

top

Mindlin, D. S., and Rubshtein, B. A.. "Convolutional attractors of stationary sequences of random measures on compact groups." Annales de l'I.H.P. Probabilités et statistiques 30.2 (1994): 213-233. <http://eudml.org/doc/77480>.

@article{Mindlin1994,
author = {Mindlin, D. S., Rubshtein, B. A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic measure-valued process; compact group; convolution semigroup of Borel probability measures; stationary random process},
language = {eng},
number = {2},
pages = {213-233},
publisher = {Gauthier-Villars},
title = {Convolutional attractors of stationary sequences of random measures on compact groups},
url = {http://eudml.org/doc/77480},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Mindlin, D. S.
AU - Rubshtein, B. A.
TI - Convolutional attractors of stationary sequences of random measures on compact groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 2
SP - 213
EP - 233
LA - eng
KW - ergodic measure-valued process; compact group; convolution semigroup of Borel probability measures; stationary random process
UR - http://eudml.org/doc/77480
ER -

References

top
  1. [1] I.P. Cornfeld, S.V. Fomin and Ya G. Sinai, Eegodic Theory, Springer-Verlag, New York, 1981. 
  2. [2] I. Csiszar, On Infinite Products of Random Elements and Infinite Convolutions of probability Distributions on Locally Compact Groups, Z. Wahr. Geb., Vol. 5, 1966, pp. 279-295. Zbl0144.39504MR205306
  3. [3] P.R. Halmos, A Hilbert Space Problembook, D. Van Nostrand company, INC, Toronto, London, 1967. Zbl0144.38704MR208368
  4. [4] H. Heyer, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, New York, 1977. Zbl0376.60002MR501241
  5. [5] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. I,II, Springer-Verlag, Berlin, 1963. Zbl0115.10603MR551496
  6. [6] Y. Kawada and K. Itô, On the Probability Distributions on a Compact Group. 1, Proc. Phys.-Math. Soc. Jap., Vol. 22, 1940, pp. 977-998. Zbl0026.13801MR3462JFM66.0544.04
  7. [7] B.M. Kloss, Limit Distributions for Sums of Independent Random Variables Taking Values in a Bicompact Group, Dokt. Akad. Nauk SSSR, Vol. 109, 1956, pp. 453-455, In Russian. Zbl0072.34503MR83212
  8. [8] B.M. Kloss, Probability Distributions on Bicompact Topological Groups, Theor. Prob. Appl., Vol. 6, 1959, pp. 237-270. Zbl0102.14102MR123348
  9. [9] K. Kuratovski, Topology. vv. I, II, Academic Press, New York-London, 1966. Zbl0158.40802MR193605
  10. [10] A. Mukherjea and N.A. Tserpes, Measures on Topological Semigroups, Lec. Notes in Math., Vol. 547, Springer-Verlag, Berlin, New York, 1976. Zbl0342.43001MR467871
  11. [11] V.M. Maksimov, Compositions Sequences of Measures on Compact Groups, Theory Probab. Appl., Vol. 16, 1971, pp. 54-73. Zbl0253.43001MR288799
  12. [12] D.S. Mindlin and B.A. Rubshtein, Convolutions of Random Measures on Compact Groups, Theory Prob. Appl., Vol. 33, 1988, pp. 355-357. Zbl0666.60010MR954587
  13. [13] D.S. Mindlin and B.A. Rubshtein, Random Measures on Compact Groups, Izv Uzb. Acad., VINITI report 3, Vol. 28, 1986, N° 13/192-D. Zbl0808.60012
  14. [14] I.Z. Ruzsa, Infinite Convolutions via Representations, Lect. Notes in Math., Vol. 1064, Springer-Verlag, Berlin-New York, 1988, pp. 398-408. Zbl0542.60015MR772421
  15. [15] V.V. Sazonov and V.N. Tutubalin, Probability Distributions on Topological Groups, Theory Probab. Appl., Vol. 11, 1966, pp. 1-46. Zbl0171.38701MR199872
  16. [16] K. Urbanik, On the Limiting Probability Distributions on a Compact Topological Group, Fund. Math., Vol. 44, 1957, pp. 253-261. Zbl0203.49902MR92921

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.