Multiplicities of a random sausage
Annales de l'I.H.P. Probabilités et statistiques (1994)
- Volume: 30, Issue: 3, page 501-518
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEvans, Steven N.. "Multiplicities of a random sausage." Annales de l'I.H.P. Probabilités et statistiques 30.3 (1994): 501-518. <http://eudml.org/doc/77492>.
@article{Evans1994,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; Lévy process; capacity; potential theory; Fredholm integral equations},
language = {eng},
number = {3},
pages = {501-518},
publisher = {Gauthier-Villars},
title = {Multiplicities of a random sausage},
url = {http://eudml.org/doc/77492},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Evans, Steven N.
TI - Multiplicities of a random sausage
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 3
SP - 501
EP - 518
LA - eng
KW - random walk; Lévy process; capacity; potential theory; Fredholm integral equations
UR - http://eudml.org/doc/77492
ER -
References
top- [1] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic, New York and London, 1968. Zbl0169.49204MR264757
- [2] C. Dellacherie and P.-A. Meyer, Probabilities and Potential C: Potential Theory for Discrete andContinuous Semigroups, North Holland, Amsterdam, 1988. Zbl0716.60001MR939365
- [3] R.K. Getoor, Some asymptotic formulas involving capacity, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 4, 1965, pp. 248-252. Zbl0295.60055MR190988
- [4] R.K. Getoor, Transience and recurrence of Markov processes, Séminaire de Probabilités XIV, Lecture Notes in Mathematics, Vol. 784, 1980, Springer. Zbl0431.60067MR580144
- [5] R.K. Getoor, Capacity theory and weak duality, Seminar on Stochastic Processes, Birkhauser, Boston, 1984. Zbl0564.60073MR902414
- [6] C.M. Goldie, A class of infinitely divisible distributions, Proc. Cambridge Philos. Soc., Vol. 63, 1967, pp. 1141-1143. Zbl0189.51701MR215332
- [7] J. Hawkes, Potential theory of Lévy processes, Proc. London Math. Soc. (3), Vol. 38, pp. 335-352. Zbl0401.60069MR531166
- [8] J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains. 2nd Edn., Graduate Texts in Mathematics, Vol. 40, Springer, New York, Heidelberg and Berlin, 1976. Zbl0348.60090MR407981
- [9] J.T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsheinlichkeitshteorie verw. Gebiete, Vol. 52, 1980, pp. 309-319. Zbl0415.60071MR576891
- [10] J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes, J. Appl. Probab., Vol. 8, 1971, pp. 391-398. Zbl0248.60063MR290461
- [11] J.F.C. Kingman, Subadditive ergodic theory, Ann. Probab., Vol. 1, 1973, pp. 883-909. Zbl0311.60018MR356192
- [12] K.V. Mardia, J.T. Kent and J.M. Bibby, Multivariate Analysis, Academic Press, London, 1979. Zbl0432.62029MR560319
- [13] J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 59, 1982, pp. 425-457. Zbl0484.60062MR656509
- [14] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990. Zbl0732.47001MR1068530
- [15] M. Sharpe, General Theory of Markov Processes, Academic, San Diego, 1988. Zbl0649.60079MR958914
- [16] F.W. Steutel, Note on the infinite divisibility of exponential mixtures, Ann. Math. Statist., Vol. 38, 1967, pp. 1303-1305. Zbl0189.51702MR215339
- [17] D. Williams, Diffusions, Markov Processes, and Martingales. Volume 1: Foundations, Wiley, New York, 1979. Zbl0402.60003MR531031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.