Multiplicities of a random sausage

Steven N. Evans

Annales de l'I.H.P. Probabilités et statistiques (1994)

  • Volume: 30, Issue: 3, page 501-518
  • ISSN: 0246-0203

How to cite

top

Evans, Steven N.. "Multiplicities of a random sausage." Annales de l'I.H.P. Probabilités et statistiques 30.3 (1994): 501-518. <http://eudml.org/doc/77492>.

@article{Evans1994,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; Lévy process; capacity; potential theory; Fredholm integral equations},
language = {eng},
number = {3},
pages = {501-518},
publisher = {Gauthier-Villars},
title = {Multiplicities of a random sausage},
url = {http://eudml.org/doc/77492},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Evans, Steven N.
TI - Multiplicities of a random sausage
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 3
SP - 501
EP - 518
LA - eng
KW - random walk; Lévy process; capacity; potential theory; Fredholm integral equations
UR - http://eudml.org/doc/77492
ER -

References

top
  1. [1] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic, New York and London, 1968. Zbl0169.49204MR264757
  2. [2] C. Dellacherie and P.-A. Meyer, Probabilities and Potential C: Potential Theory for Discrete andContinuous Semigroups, North Holland, Amsterdam, 1988. Zbl0716.60001MR939365
  3. [3] R.K. Getoor, Some asymptotic formulas involving capacity, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 4, 1965, pp. 248-252. Zbl0295.60055MR190988
  4. [4] R.K. Getoor, Transience and recurrence of Markov processes, Séminaire de Probabilités XIV, Lecture Notes in Mathematics, Vol. 784, 1980, Springer. Zbl0431.60067MR580144
  5. [5] R.K. Getoor, Capacity theory and weak duality, Seminar on Stochastic Processes, Birkhauser, Boston, 1984. Zbl0564.60073MR902414
  6. [6] C.M. Goldie, A class of infinitely divisible distributions, Proc. Cambridge Philos. Soc., Vol. 63, 1967, pp. 1141-1143. Zbl0189.51701MR215332
  7. [7] J. Hawkes, Potential theory of Lévy processes, Proc. London Math. Soc. (3), Vol. 38, pp. 335-352. Zbl0401.60069MR531166
  8. [8] J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains. 2nd Edn., Graduate Texts in Mathematics, Vol. 40, Springer, New York, Heidelberg and Berlin, 1976. Zbl0348.60090MR407981
  9. [9] J.T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsheinlichkeitshteorie verw. Gebiete, Vol. 52, 1980, pp. 309-319. Zbl0415.60071MR576891
  10. [10] J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes, J. Appl. Probab., Vol. 8, 1971, pp. 391-398. Zbl0248.60063MR290461
  11. [11] J.F.C. Kingman, Subadditive ergodic theory, Ann. Probab., Vol. 1, 1973, pp. 883-909. Zbl0311.60018MR356192
  12. [12] K.V. Mardia, J.T. Kent and J.M. Bibby, Multivariate Analysis, Academic Press, London, 1979. Zbl0432.62029MR560319
  13. [13] J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 59, 1982, pp. 425-457. Zbl0484.60062MR656509
  14. [14] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990. Zbl0732.47001MR1068530
  15. [15] M. Sharpe, General Theory of Markov Processes, Academic, San Diego, 1988. Zbl0649.60079MR958914
  16. [16] F.W. Steutel, Note on the infinite divisibility of exponential mixtures, Ann. Math. Statist., Vol. 38, 1967, pp. 1303-1305. Zbl0189.51702MR215339
  17. [17] D. Williams, Diffusions, Markov Processes, and Martingales. Volume 1: Foundations, Wiley, New York, 1979. Zbl0402.60003MR531031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.