Large deviation probabilities for some rescaled superprocesses

Klaus Fleischmann; Ingemar Kaj

Annales de l'I.H.P. Probabilités et statistiques (1994)

  • Volume: 30, Issue: 4, page 607-645
  • ISSN: 0246-0203

How to cite

top

Fleischmann, Klaus, and Kaj, Ingemar. "Large deviation probabilities for some rescaled superprocesses." Annales de l'I.H.P. Probabilités et statistiques 30.4 (1994): 607-645. <http://eudml.org/doc/77495>.

@article{Fleischmann1994,
author = {Fleischmann, Klaus, Kaj, Ingemar},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviation; superprocess; cumulant equation; rate functional},
language = {eng},
number = {4},
pages = {607-645},
publisher = {Gauthier-Villars},
title = {Large deviation probabilities for some rescaled superprocesses},
url = {http://eudml.org/doc/77495},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Fleischmann, Klaus
AU - Kaj, Ingemar
TI - Large deviation probabilities for some rescaled superprocesses
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 4
SP - 607
EP - 645
LA - eng
KW - large deviation; superprocess; cumulant equation; rate functional
UR - http://eudml.org/doc/77495
ER -

References

top
  1. [1] H. Bauer, Probability Theory and Elements of Measure Theory, 1981, Academic Press, London. Zbl0466.60001MR636091
  2. [2] J.T. Cox and D. Griffeath, Occupation times for critical branching Brownian motion, Ann. Probab., 13, 1985, pp. 1108-1132 Zbl0582.60091MR806212
  3. [3] D.A. Dawson, Measure-valued Markov Processes, École d'Été de Probabilités de Saint-Flour XXI-1991 (ed. P. L. Hennequin), Lecture Notes Math., Vol. 1541, 1993, pp. 1-260. Zbl0799.60080MR1242575
  4. [4] D.A. Dawson and K. Fleischmann, Strong clumping of critical space-time branching models in subcritical dimensions, Stochastic Processes Appl., Vol. 30, 1988, pp. 193-208. Zbl0678.60040MR978354
  5. [5] D.A. Dawson and K. Fleischmann, Diffusion and reaction caused by point catalysts, SIAM J. Appl. Math., Vol. 52, 1992, pp. 163-180. Zbl0781.35026MR1148324
  6. [6] D.A. Dawson, K. Fleischmann and L.G. Gorostiza, Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium, Ann. Probab., Vol. 17, 1989, pp. 1083-1117. Zbl0694.60078MR1009446
  7. [7] D.A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, Vol. 20, 1987, pp. 247-308. Zbl0613.60021MR885876
  8. [8] A. De Acosta, P. Ney and E. Nummelin, Large deviation lower bounds for general sequences of random variables, In: Random Walks, Brownian Motion and Interacting Particle Systems, A Festschrift in Honor of Frank Spitzer, Editors: R. Durrett and H. Kesten, Progress Probab., Vol. 28, 1991, pp. 215-221, Birkhäuser, Boston. Zbl0741.60020MR1146448
  9. [9] J.-D. Deuschel and D.W. Stroock, Large Deviations, 1989, Academic Press, Boston. Zbl0705.60029MR997938
  10. [10] R.D. Ellis, Large Deviations for a general class of random vectors, Ann. Probab., Vol. 12, 1984, pp. 1-12. Zbl0534.60026MR723726
  11. [11] K. Fleischmann, J. Gärtner and I. Kaj, A Schilder type theorem for super-Brownian motion, Uppsala University, Dept. Math., 1993, Preprint No. 14. Zbl0860.60066MR1402327
  12. [12] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, 1984, Springer-Verlag, New York. Zbl0522.60055MR722136
  13. [13] H. Fujita, On the blowing up of solutions of the Cauchy Problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo, Vol. 13, 1966, pp. 109-124. Zbl0163.34002MR214914
  14. [14] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Th. Related Fields, Vol. 71, 1986, pp. 85-116. Zbl0555.60034MR814663
  15. [15] I. Iscoe and T.Y. Lee, Large deviations for occupation times of measure-valued branching Brownian motions, Stochastics, Stochastic Reports, Vol. 45, 1993, pp. 177-209. Zbl0797.60025MR1306931
  16. [16] O. Kallenberg, Random Measures, 3rd revised and enlarged ed. 1983, Akademie-Verlag, Berlin. Zbl0544.60053MR818219
  17. [17] T.Y. Lee, Some limit theorems for super-Brownian motion and semilinear differential equations, Ann. Probab., Vol. 21, 1993, pp. 979-995. Zbl0776.60038MR1217576
  18. [18] A. Liemant, Invariante zufällige Punktfolgen, Wiss. Z. Friedrich-Schiller-Universität Jena, Vol. 18, 1969, pp. 361-372. Zbl0265.60082MR292151
  19. [19] K. Matthies, J. Kerstan and J. Mecke, Infinitely Divisible Point Processes, 1978, Wiley, Chichester. Zbl0383.60001MR517931
  20. [20] C.E. Mueller and F.B. Weissler, Single point blow-up for a general semi-linear heat equation, Indiana Univ. Math. J. Vol. 34, 1985, pp. 881-913. Zbl0597.35057MR808833
  21. [21] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc., Vol. 139, 1969, pp. 301-310. Zbl0175.40702MR239379
  22. [22] E. Zeidler, Nonlinear Functional Analysis and its Applications I, 1986, Springer-Verlag, New York. Zbl0583.47050MR816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.