Large deviation probabilities for some rescaled superprocesses
Klaus Fleischmann; Ingemar Kaj
Annales de l'I.H.P. Probabilités et statistiques (1994)
- Volume: 30, Issue: 4, page 607-645
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFleischmann, Klaus, and Kaj, Ingemar. "Large deviation probabilities for some rescaled superprocesses." Annales de l'I.H.P. Probabilités et statistiques 30.4 (1994): 607-645. <http://eudml.org/doc/77495>.
@article{Fleischmann1994,
author = {Fleischmann, Klaus, Kaj, Ingemar},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviation; superprocess; cumulant equation; rate functional},
language = {eng},
number = {4},
pages = {607-645},
publisher = {Gauthier-Villars},
title = {Large deviation probabilities for some rescaled superprocesses},
url = {http://eudml.org/doc/77495},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Fleischmann, Klaus
AU - Kaj, Ingemar
TI - Large deviation probabilities for some rescaled superprocesses
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 4
SP - 607
EP - 645
LA - eng
KW - large deviation; superprocess; cumulant equation; rate functional
UR - http://eudml.org/doc/77495
ER -
References
top- [1] H. Bauer, Probability Theory and Elements of Measure Theory, 1981, Academic Press, London. Zbl0466.60001MR636091
- [2] J.T. Cox and D. Griffeath, Occupation times for critical branching Brownian motion, Ann. Probab., 13, 1985, pp. 1108-1132 Zbl0582.60091MR806212
- [3] D.A. Dawson, Measure-valued Markov Processes, École d'Été de Probabilités de Saint-Flour XXI-1991 (ed. P. L. Hennequin), Lecture Notes Math., Vol. 1541, 1993, pp. 1-260. Zbl0799.60080MR1242575
- [4] D.A. Dawson and K. Fleischmann, Strong clumping of critical space-time branching models in subcritical dimensions, Stochastic Processes Appl., Vol. 30, 1988, pp. 193-208. Zbl0678.60040MR978354
- [5] D.A. Dawson and K. Fleischmann, Diffusion and reaction caused by point catalysts, SIAM J. Appl. Math., Vol. 52, 1992, pp. 163-180. Zbl0781.35026MR1148324
- [6] D.A. Dawson, K. Fleischmann and L.G. Gorostiza, Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium, Ann. Probab., Vol. 17, 1989, pp. 1083-1117. Zbl0694.60078MR1009446
- [7] D.A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, Vol. 20, 1987, pp. 247-308. Zbl0613.60021MR885876
- [8] A. De Acosta, P. Ney and E. Nummelin, Large deviation lower bounds for general sequences of random variables, In: Random Walks, Brownian Motion and Interacting Particle Systems, A Festschrift in Honor of Frank Spitzer, Editors: R. Durrett and H. Kesten, Progress Probab., Vol. 28, 1991, pp. 215-221, Birkhäuser, Boston. Zbl0741.60020MR1146448
- [9] J.-D. Deuschel and D.W. Stroock, Large Deviations, 1989, Academic Press, Boston. Zbl0705.60029MR997938
- [10] R.D. Ellis, Large Deviations for a general class of random vectors, Ann. Probab., Vol. 12, 1984, pp. 1-12. Zbl0534.60026MR723726
- [11] K. Fleischmann, J. Gärtner and I. Kaj, A Schilder type theorem for super-Brownian motion, Uppsala University, Dept. Math., 1993, Preprint No. 14. Zbl0860.60066MR1402327
- [12] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, 1984, Springer-Verlag, New York. Zbl0522.60055MR722136
- [13] H. Fujita, On the blowing up of solutions of the Cauchy Problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo, Vol. 13, 1966, pp. 109-124. Zbl0163.34002MR214914
- [14] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Th. Related Fields, Vol. 71, 1986, pp. 85-116. Zbl0555.60034MR814663
- [15] I. Iscoe and T.Y. Lee, Large deviations for occupation times of measure-valued branching Brownian motions, Stochastics, Stochastic Reports, Vol. 45, 1993, pp. 177-209. Zbl0797.60025MR1306931
- [16] O. Kallenberg, Random Measures, 3rd revised and enlarged ed. 1983, Akademie-Verlag, Berlin. Zbl0544.60053MR818219
- [17] T.Y. Lee, Some limit theorems for super-Brownian motion and semilinear differential equations, Ann. Probab., Vol. 21, 1993, pp. 979-995. Zbl0776.60038MR1217576
- [18] A. Liemant, Invariante zufällige Punktfolgen, Wiss. Z. Friedrich-Schiller-Universität Jena, Vol. 18, 1969, pp. 361-372. Zbl0265.60082MR292151
- [19] K. Matthies, J. Kerstan and J. Mecke, Infinitely Divisible Point Processes, 1978, Wiley, Chichester. Zbl0383.60001MR517931
- [20] C.E. Mueller and F.B. Weissler, Single point blow-up for a general semi-linear heat equation, Indiana Univ. Math. J. Vol. 34, 1985, pp. 881-913. Zbl0597.35057MR808833
- [21] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc., Vol. 139, 1969, pp. 301-310. Zbl0175.40702MR239379
- [22] E. Zeidler, Nonlinear Functional Analysis and its Applications I, 1986, Springer-Verlag, New York. Zbl0583.47050MR816732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.