Variance of number of lattice points in random narrow elliptic strip

Pavel M. Bleher; Joel L. Lebowitz

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 1, page 27-58
  • ISSN: 0246-0203

How to cite

top

Bleher, Pavel M., and Lebowitz, Joel L.. "Variance of number of lattice points in random narrow elliptic strip." Annales de l'I.H.P. Probabilités et statistiques 31.1 (1995): 27-58. <http://eudml.org/doc/77507>.

@article{Bleher1995,
author = {Bleher, Pavel M., Lebowitz, Joel L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {lattice points; elliptic strip; diophantine number; Liouville number},
language = {eng},
number = {1},
pages = {27-58},
publisher = {Gauthier-Villars},
title = {Variance of number of lattice points in random narrow elliptic strip},
url = {http://eudml.org/doc/77507},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Bleher, Pavel M.
AU - Lebowitz, Joel L.
TI - Variance of number of lattice points in random narrow elliptic strip
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 27
EP - 58
LA - eng
KW - lattice points; elliptic strip; diophantine number; Liouville number
UR - http://eudml.org/doc/77507
ER -

References

top
  1. [Ber] M.V. Berry, Semiclassical theory of spectral rigidity, Proc. R. Soc. Lond., Vol. A 400, 1985, pp. 229-251. Zbl0875.35061MR805089
  2. [BT] M.V. Berry and M. Tabor, Level clustering in the regular spectrum, Proc. R. Soc. Lond., Vol. A 356, 1977, pp. 375-394. Zbl1119.81395
  3. [BCDL] P.M. Bleher, Zh. Cheng, F.J. Dyson and J.L. Lebowitz, Distribution of the error term of number of lattice points inside a shifted circle, Commun. Math. Phys., Vol. 154, 1993, pp. 433-469. Zbl0781.11038MR1224087
  4. [BD1] P.M. Bleher and F.J. Dyson, The variance of the error function in the shifted circle problem is a wild function of the shift, Commun. Math. Phys. (to appear). Zbl0808.11058MR1266060
  5. [BD2] P.M. Bleher and F.J. Dyson, Mean square value of exponential sums related to representation of integers as sum of two squares, Acta Arithm. (to appear). Zbl0915.11048MR1302508
  6. [BDL] P.M. Bleher, F.J. Dyson and J.L. Lebowitz, Non-gaussian energy level statistics for some integrable systems, Phys. Rev. Lett., Vol. 71, 1993, pp. 3047-3050. Zbl1050.81530MR1246066
  7. [BL] P.M. Bleher and J.L. Lebowitz, Energy-level statistics of model quantum systems: universality and scaling in a lattice-point problem, J. Stat. Phys., Vol. 74, 1994, pp. 167-217. Zbl0946.11520MR1257819
  8. [Ble] P.M. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. Journ., Vol. 67, 1992, pp. 461-481. Zbl0762.11031MR1181309
  9. [CCG] G. Casati, B.V. Chirikov and I. Guarneri, Energy-level statistics of integrable quantum systems, Phys. Rev. Lett., Vol. 54, 1985, pp. 1350-1353. MR780344
  10. [CL] Zh. Cheng and J.L. Lebowitz, Statistics of energy levels in integrable quantum systems, Phys. Rev., Vol. A44, 1991, pp. R3399-3402. 
  11. [CLM] Zh. Cheng, L. Lebowitz and P. Major, On the number of lattice points between two enlarged and randomly shifted copies of an oval, Preprint, Rutgers University, 1993. 
  12. [Gu] M.C. Gutzwiller, Chaos in classical and quantum mechanics, Springer-Verlag, N. Y. e.a., 1990. Zbl0727.70029MR1077246
  13. [HL] G.H. Hardy and J.E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive, Proc. London Math. Soc., Vol. 13, 1914, p. 174. Zbl45.0389.02JFM45.0389.02
  14. [LS] W. Luo and P. Sarnak, Number variance for arithmetic hyperbolic surfaces, Preprint, Princeton University, 1993. 
  15. [Maj] P. Major, Poisson law for the number of lattice points in a random strip with finite area, Prob. Theory Related Fields, Vol. 92, 1992, pp. 423-464. Zbl0767.60010MR1169014
  16. [OdA] A.M. Ozorio de Almeida, Hamiltonian systems: chaos and quantization, Cambridge Univ. Press, New York, 1988. Zbl0734.58002MR985103
  17. [Sin] Ya.G. Sinai, Poisson distribution in a geometric problem, in Advances in Soviet Mathematics, Vol. 3, Ya G. SINAI Ed. (AMS, Providence, Rhode Island), 1991, pp. 199-214. Zbl0744.60016MR1118163
  18. [Tab] M. Tabor, Chaos and integrabhility in nonlinear dynamics. An introduction, Wiley, New York, 1989. Zbl0682.58003MR1007309

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.