Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise

S. Brassesco; A. De Masi; E. Presutti

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 1, page 81-118
  • ISSN: 0246-0203

How to cite

top

Brassesco, S., De Masi, A., and Presutti, E.. "Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise." Annales de l'I.H.P. Probabilités et statistiques 31.1 (1995): 81-118. <http://eudml.org/doc/77510>.

@article{Brassesco1995,
author = {Brassesco, S., De Masi, A., Presutti, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Ginzburg-Landau equation; Neumann boundary conditions; instanton; Brownian motion},
language = {eng},
number = {1},
pages = {81-118},
publisher = {Gauthier-Villars},
title = {Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise},
url = {http://eudml.org/doc/77510},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Brassesco, S.
AU - De Masi, A.
AU - Presutti, E.
TI - Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 81
EP - 118
LA - eng
KW - Ginzburg-Landau equation; Neumann boundary conditions; instanton; Brownian motion
UR - http://eudml.org/doc/77510
ER -

References

top
  1. [1] R.J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Lecture Notes-Monograph series, Institute of Mathematical Statistics, Vol. 42, 1990. Zbl0747.60039MR1088478
  2. [2] S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., Vol. 27, 1979, pp. 1084-1095. 
  3. [3] S. Brassesco, Stability of the instanton under small random perturbations, to appear in Stoch. Proc. App., 1994. Zbl0815.60051MR1307343
  4. [4] J. Carr and B. Pego, Metastable patterns in solutions of ut = ∈2uxx + u(1 - u2), Commun. Pure Applied Math., Vol. 42, 1989, pp. 523-576. Zbl0685.35054MR997567
  5. [5] M. Cassandro, E. Orlandi and E. Presutti, Interfaces and typical Gibbs configurations for one dimensional Kac potentials, Prob. Theory Rel. Fields, Vol. 96, 1993, pp. 57-96. Zbl0791.60096MR1222365
  6. [6] A. De Masi and E. Presutti, Mathematical methods for hydrodynamical limits, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, Vol. 1501, 1991. Zbl0754.60122MR1175626
  7. [7] G.F. Dell'Antonio, Methods of stochastic stability of the Gribov horizon in the stochastic quantization of gauge theories, Lecture Notes in Physics, Proceedings of the 1988 Ascona Conference, Springer Verlag, 1988. 
  8. [8] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992. Zbl0761.60052MR1207136
  9. [9] A. De Masi, T. Gobron and E. Presutti, Travelling fronts in non local evolution equations, Preprint, 1993. Zbl0847.45008
  10. [10] C.R. Doering, Nonlinear parabolic stochastic differential equations with additive colored noise on R x R+: a regulated stochastic quantization, Comm. Math. Phys., Vol. 109, 1987, pp. 537-561. Zbl0625.60069MR885561
  11. [11] W. Paris and G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise, J. Phys., Vol. A 15, 1982, pp. 3025-3055. Zbl0496.60060MR684578
  12. [12] P. Fife and J.B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. Zbl0361.35035MR442480
  13. [13] T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, preprint, 1993. MR1337253
  14. [14] G. Fusco, A geometric approach to the dynamics of ut = ∈2 uxx + f(u) for small ∈, Lecture Notes in Physics, Springer-Verlag, Vol. 359, 1990, pp. 53-73. Zbl0715.35038MR1062209
  15. [15] G. Fusco and J. Hale, Slow-motion manifolds, dormant instability and singular perturbations, J. Dynamics Differential equations, Vol. 1, 1989, pp. 75-94. Zbl0684.34055MR1010961
  16. [16] P.C. Hohenberg and P.I. Halperin, Theory of dynamicl critical phenomena, Rev. Mod. Phys., Vol. 49, 1977, pp. 453-479. 
  17. [17] D. Revuz and M. Yor, Continuous martingales and brownian motion, Springer Verlag, Heidelberg, Berlin, New York, 1991. Zbl0731.60002MR1083357
  18. [18] J.B. Walsh, A stochastic model of Neural Response, Adv. Appl. Prob., Vol. 13, 1981, pp. 231-281. Zbl0471.60083MR612203
  19. [19] J.B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Mathematics, Vol. 1180, Springer-Verlag, 1984, pp. 265-437. Zbl0608.60060MR876085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.