Martingales browniennes et conjecture de Sakai
Annales de l'I.H.P. Probabilités et statistiques (1995)
- Volume: 31, Issue: 3, page 429-452
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPiau, Didier. "Martingales browniennes et conjecture de Sakai." Annales de l'I.H.P. Probabilités et statistiques 31.3 (1995): 429-452. <http://eudml.org/doc/77516>.
@article{Piau1995,
author = {Piau, Didier},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {martingales and classical analysis; harmonic majorant},
language = {fre},
number = {3},
pages = {429-452},
publisher = {Gauthier-Villars},
title = {Martingales browniennes et conjecture de Sakai},
url = {http://eudml.org/doc/77516},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Piau, Didier
TI - Martingales browniennes et conjecture de Sakai
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 3
SP - 429
EP - 452
LA - fre
KW - martingales and classical analysis; harmonic majorant
UR - http://eudml.org/doc/77516
ER -
References
top- [1] M. Aizenman et B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. on Pure and Applied Math., vol. 35, 1982, p. 209-273. Zbl0459.60069MR644024
- [2] H. Alexander, B.A. Taylor et J.L. Ullman, Areas of projections of analytic sets, Inventiones Math., vol. 16, 1972, p. 335-341. Zbl0238.32007MR302935
- [3] C. Bandle, On symmetrizations in parabolic equations, Journal d'Analyse Math., vol. 30, 1976, p. 98-112. Zbl0331.35036MR442477
- [4] C. Bandle, Isoperimetric inequalities and applications, Pitman, 1980. Zbl0436.35063MR572958
- [5] H. Brascamp, E. Lieb et J. Luitinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis, vol. 17, 1974, p. 227-237. Zbl0286.26005MR346109
- [6] P. Duren, Theory of Hp spaces, Academic Press, 1970. Zbl0215.20203MR268655
- [7] S. Kobayashi, Image areas and H2 norms of analytic functions, Proc. AMS, vol. 91, 1984, p. 257-261. Zbl0512.30025MR740181
- [8] S. Kobayashi, Dirichlet integrals and H4 norms of analytic functions, Bulletin of the Nagaoka University of Technology, vol. 11, 1989.
- [9] M.-Th. Kohler-Jobin, Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques, C. R. Acad. Sci. Paris, t. 284, série A, 1977, p. 917-920. Zbl0363.35007MR434087
- [10] L. Payne, Some isoperimetric inequalities in the torsion problem for multiply connected regions, Studies in Math. Analysis and Related Topics, Stanford Univ. Press, 1962. Zbl0114.40702MR163472
- [11] G. Pólya et G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton University Press, 1951. Zbl0044.38301MR43486
- [12] S. Port et C. Stone, Brownian motion and classical potential theory, Academic Press, 1978. Zbl0413.60067MR492329
- [13] D. Revuz et M. Yor, Continuous martingales and Brownian motion, Springer Verlag, 1991. Zbl0731.60002MR1083357
- [14] M. Sakai, Isoperimetric inequalities for the least harmonic majorant of ∥x∥p, Trans. AMS, vol. 299, n° 2, 1987, p. 431-472. Zbl0616.31003MR869215
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.