A note on parabolic convexity and heat conduction

Christer Borell

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 3, page 387-393
  • ISSN: 0246-0203

How to cite

top

Borell, Christer. "A note on parabolic convexity and heat conduction." Annales de l'I.H.P. Probabilités et statistiques 32.3 (1996): 387-393. <http://eudml.org/doc/77540>.

@article{Borell1996,
author = {Borell, Christer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {parabolic convexity; Brownian motion; Ehrhard inequality},
language = {eng},
number = {3},
pages = {387-393},
publisher = {Gauthier-Villars},
title = {A note on parabolic convexity and heat conduction},
url = {http://eudml.org/doc/77540},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Borell, Christer
TI - A note on parabolic convexity and heat conduction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 3
SP - 387
EP - 393
LA - eng
KW - parabolic convexity; Brownian motion; Ehrhard inequality
UR - http://eudml.org/doc/77540
ER -

References

top
  1. [1] H. Bauer, Heat balls and Fulks measures. Ann. Acad. Sci. Fennicae Ser. A. I. Math., Vol. 10, 1985, pp. 67-82. Zbl0592.35057MR802468
  2. [2] C. Borell, Undersökning av paraboliska mått. Preprint series No. 16, Aarhus Univ. 1974/75. MR388475
  3. [3] C. Borell, Geometric properties of some familiar diffusions in Rn. Ann. Probability, Vol. 21, 1993, pp. 482-489. Zbl0776.35024MR1207234
  4. [4] C. Borell, Greenian potentials and concavity. Math. Ann., 1985, pp. 155-160 . Zbl0584.31003MR794098
  5. [5] H.J. Brascamp and E.H. Lieb, In Functional integration and its applications, edited by A. M. Arthurs, Clarendon Press, Oxford1975. Zbl0348.26011MR465645
  6. [6] H.J. Brascamp and E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation.J. Funct. Anal., Vol. 22, 1976, pp. 366-389. Zbl0334.26009MR450480
  7. [7] J.L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, 1984. Zbl0549.31001MR731258
  8. [8] A. Ehrhard, Symétrisation dans l'espace deGauss. Math. Scand., Vol. 53, 1983, pp. 281-301. Zbl0542.60003MR745081
  9. [9] R.M. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc., Vol. 32, 1957, pp. 286-294. Zbl0087.09702MR90662
  10. [10] L. Hörmander, Notions of convexity, Birkhäuser, Boston, 1994. Zbl0835.32001MR1301332
  11. [11] B. Kawohl, When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane.Z. Angew. Math. Mech., Vol. 64, 1984, pp. 364-366. Zbl0581.73006MR754534
  12. [12] N.A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc., Vol. 33, 1976, pp. 251-298. Zbl0336.35046MR425145
  13. [13] N.A. Watson, Mean values of subtemperatures over level surfaces of Green functions. Ark. Mat., Vol. 30, 1992, pp. 165-185. Zbl0784.35039MR1171101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.