Large deviations and strong mixing

Włodzimierz Bryc; Amir Dembo

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 4, page 549-569
  • ISSN: 0246-0203

How to cite

top

Bryc, Włodzimierz, and Dembo, Amir. "Large deviations and strong mixing." Annales de l'I.H.P. Probabilités et statistiques 32.4 (1996): 549-569. <http://eudml.org/doc/77545>.

@article{Bryc1996,
author = {Bryc, Włodzimierz, Dembo, Amir},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; empirical measure; strong mixing; hypermixing; Markov chains; bounded additive functionals},
language = {eng},
number = {4},
pages = {549-569},
publisher = {Gauthier-Villars},
title = {Large deviations and strong mixing},
url = {http://eudml.org/doc/77545},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Bryc, Włodzimierz
AU - Dembo, Amir
TI - Large deviations and strong mixing
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 4
SP - 549
EP - 569
LA - eng
KW - large deviations; empirical measure; strong mixing; hypermixing; Markov chains; bounded additive functionals
UR - http://eudml.org/doc/77545
ER -

References

top
  1. [1] J.R. Baxter, N.C. Jain and S.R.S. Varadhan, Some familiar examples for which the large deviation principle does not hold, Commun. Pure Appl. Math., Vol. 34, 1991, pp. 911-923. Zbl0749.60025MR1127039
  2. [2] E. Bolthausen and U. Schmock, On the maximum entropy principle for uniformly ergodic Markov chains, Stochastic Processes Appl., Vol. 33, 1989, pp. 1-27. Zbl0691.60023MR1027105
  3. [3] R.C. Bradley, Basic properties of strong mixing conditions. In E. EBERLEIN and M. TAQQU, eds., Dependence in Probability andStatistics, Birkhäuser, Basel, Switzerland, 1986, pp. 165-192. Zbl0603.60034MR899990
  4. [4] R.C. Bradley, W. Bryc and S. Janson, On dominations between measures of dependence, J. Multivar. Anal., Vol. 23, 1987, pp. 312-329. Zbl0627.60009MR918261
  5. [5] R.C. Bradley and M. Peligrad, Invariance principles under a two-part mixing assumption, Stochastic Processes Appl., Vol. 22, 1986, pp. 271-289. Zbl0609.60048MR860937
  6. [6] W. Bryc, On large deviations for uniformly strong mixing sequences, Stochastic Processes Appl., Vol. 41, 1992, pp. 191-202. Zbl0756.60027MR1164173
  7. [7] W. Bryc and W. Smolenski, On the convergence of averages of mixing sequences, J. Theor. Probab., Vol. 6, 1993, pp. 473-483. Zbl0776.60035MR1230342
  8. [8] T. Chiyonobu and S. Kusuoka, The large deviation principle for hypermixing processes, Probab. Theory Relat. Fields, Vol. 78, 1988, pp. 627-649. Zbl0634.60025MR950350
  9. [9] D. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, Vol. 20, 1987, pp. 247-308. Zbl0613.60021MR885876
  10. [10] A. De Acosta, Large deviations for empirical measures of Markov chains, J. Theor. Probab., Vol. 3, 1990, pp. 395-431. Zbl0711.60023MR1057523
  11. [11] A. De Acosta, On large deviations of empirical measures in τ topology, special issue ofJournal of Applied Probability in honor of L. TAKACS, Vol. 31A, 1994, pp. 41-47. Zbl0810.60022MR1274716
  12. [12] A. Dembo and O. Zeitouni, Large DeviationsTechniques and Applications, Jones and Bartlett, Boston, MA, 1993. Zbl0793.60030MR1202429
  13. [13] J.D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, Boston, MA, 1989. Zbl0705.60029MR997938
  14. [14] I.H. Dinwoodie, Identifying a large deviation rate function, Ann. Probab., Vol. 21, 1993, pp. 216-231. Zbl0777.60024MR1207224
  15. [15] I.H. Dinwoodie and S.L. Zabell, Large deviations for exchangeable random vectors, Ann. Probab., Vol. 20, 1992, pp. 1147-1166. Zbl0760.60025MR1175254
  16. [16] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, Commun. Pure Appl. Math., Vol. 28, 1975, pp. 1-47. Zbl0323.60069MR386024
  17. [17] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III. Commun. Pure Appl. Math., Vol. 29, 1976, pp. 389-461. Zbl0348.60032MR428471
  18. [18] J.L. Doob, Stochastic Processes, Wiley, New York, NY, 1953. Zbl0053.26802MR58896
  19. [19] J.M. Hammersley, Generalization of the fundamental theorem on subadditive functions, Math. Proc. Camb. Philos. Soc., Vol. 58, 1962, pp. 235-238. Zbl0121.29402MR137800
  20. [20] N.C. Jain, Large deviation lower bounds for additive functionals of Markov processes, Ann. Probab., Vol. 18, 1990, pp. 1071-1098. Zbl0713.60037MR1062059
  21. [21] P. Ney and E. Nummelin, Markov additive processes II: large deviations, Ann. Probab., Vol. 15, 1987, pp. 593-609. Zbl0625.60028MR885132
  22. [22] H. Yijun, Large deviations for stationary φ-mixing sequences in r-topology, preprint1993. 
  23. [23] E. Nummelin, General irreducible Markov chains and non-negative operators, Cambridge Tracts in Mathematics, Vol. 83, Cambridge University Press, 1984. Zbl0551.60066MR776608
  24. [24] E. Nummelin, Large deviations for functionals of stationary processes, Probab. Theory Relat. Fields, Vol. 86, 1990, pp. 387-401. Zbl0685.60029MR1069286
  25. [25] G.L. O'Brien, Sequences of capacities, with connections to large-deviation theory, J. Theoretical Probab., Vol. 8, 1995. Zbl0847.60061
  26. [26] M. Rosenblatt, Markov Processes, Structure and Asymptotic Behavior, Springer-Verlag, Berlin, 1971. Zbl0236.60002MR329037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.