Large deviations and strong mixing
Annales de l'I.H.P. Probabilités et statistiques (1996)
- Volume: 32, Issue: 4, page 549-569
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBryc, Włodzimierz, and Dembo, Amir. "Large deviations and strong mixing." Annales de l'I.H.P. Probabilités et statistiques 32.4 (1996): 549-569. <http://eudml.org/doc/77545>.
@article{Bryc1996,
author = {Bryc, Włodzimierz, Dembo, Amir},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; empirical measure; strong mixing; hypermixing; Markov chains; bounded additive functionals},
language = {eng},
number = {4},
pages = {549-569},
publisher = {Gauthier-Villars},
title = {Large deviations and strong mixing},
url = {http://eudml.org/doc/77545},
volume = {32},
year = {1996},
}
TY - JOUR
AU - Bryc, Włodzimierz
AU - Dembo, Amir
TI - Large deviations and strong mixing
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 4
SP - 549
EP - 569
LA - eng
KW - large deviations; empirical measure; strong mixing; hypermixing; Markov chains; bounded additive functionals
UR - http://eudml.org/doc/77545
ER -
References
top- [1] J.R. Baxter, N.C. Jain and S.R.S. Varadhan, Some familiar examples for which the large deviation principle does not hold, Commun. Pure Appl. Math., Vol. 34, 1991, pp. 911-923. Zbl0749.60025MR1127039
- [2] E. Bolthausen and U. Schmock, On the maximum entropy principle for uniformly ergodic Markov chains, Stochastic Processes Appl., Vol. 33, 1989, pp. 1-27. Zbl0691.60023MR1027105
- [3] R.C. Bradley, Basic properties of strong mixing conditions. In E. EBERLEIN and M. TAQQU, eds., Dependence in Probability andStatistics, Birkhäuser, Basel, Switzerland, 1986, pp. 165-192. Zbl0603.60034MR899990
- [4] R.C. Bradley, W. Bryc and S. Janson, On dominations between measures of dependence, J. Multivar. Anal., Vol. 23, 1987, pp. 312-329. Zbl0627.60009MR918261
- [5] R.C. Bradley and M. Peligrad, Invariance principles under a two-part mixing assumption, Stochastic Processes Appl., Vol. 22, 1986, pp. 271-289. Zbl0609.60048MR860937
- [6] W. Bryc, On large deviations for uniformly strong mixing sequences, Stochastic Processes Appl., Vol. 41, 1992, pp. 191-202. Zbl0756.60027MR1164173
- [7] W. Bryc and W. Smolenski, On the convergence of averages of mixing sequences, J. Theor. Probab., Vol. 6, 1993, pp. 473-483. Zbl0776.60035MR1230342
- [8] T. Chiyonobu and S. Kusuoka, The large deviation principle for hypermixing processes, Probab. Theory Relat. Fields, Vol. 78, 1988, pp. 627-649. Zbl0634.60025MR950350
- [9] D. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, Vol. 20, 1987, pp. 247-308. Zbl0613.60021MR885876
- [10] A. De Acosta, Large deviations for empirical measures of Markov chains, J. Theor. Probab., Vol. 3, 1990, pp. 395-431. Zbl0711.60023MR1057523
- [11] A. De Acosta, On large deviations of empirical measures in τ topology, special issue ofJournal of Applied Probability in honor of L. TAKACS, Vol. 31A, 1994, pp. 41-47. Zbl0810.60022MR1274716
- [12] A. Dembo and O. Zeitouni, Large DeviationsTechniques and Applications, Jones and Bartlett, Boston, MA, 1993. Zbl0793.60030MR1202429
- [13] J.D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, Boston, MA, 1989. Zbl0705.60029MR997938
- [14] I.H. Dinwoodie, Identifying a large deviation rate function, Ann. Probab., Vol. 21, 1993, pp. 216-231. Zbl0777.60024MR1207224
- [15] I.H. Dinwoodie and S.L. Zabell, Large deviations for exchangeable random vectors, Ann. Probab., Vol. 20, 1992, pp. 1147-1166. Zbl0760.60025MR1175254
- [16] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, Commun. Pure Appl. Math., Vol. 28, 1975, pp. 1-47. Zbl0323.60069MR386024
- [17] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III. Commun. Pure Appl. Math., Vol. 29, 1976, pp. 389-461. Zbl0348.60032MR428471
- [18] J.L. Doob, Stochastic Processes, Wiley, New York, NY, 1953. Zbl0053.26802MR58896
- [19] J.M. Hammersley, Generalization of the fundamental theorem on subadditive functions, Math. Proc. Camb. Philos. Soc., Vol. 58, 1962, pp. 235-238. Zbl0121.29402MR137800
- [20] N.C. Jain, Large deviation lower bounds for additive functionals of Markov processes, Ann. Probab., Vol. 18, 1990, pp. 1071-1098. Zbl0713.60037MR1062059
- [21] P. Ney and E. Nummelin, Markov additive processes II: large deviations, Ann. Probab., Vol. 15, 1987, pp. 593-609. Zbl0625.60028MR885132
- [22] H. Yijun, Large deviations for stationary φ-mixing sequences in r-topology, preprint1993.
- [23] E. Nummelin, General irreducible Markov chains and non-negative operators, Cambridge Tracts in Mathematics, Vol. 83, Cambridge University Press, 1984. Zbl0551.60066MR776608
- [24] E. Nummelin, Large deviations for functionals of stationary processes, Probab. Theory Relat. Fields, Vol. 86, 1990, pp. 387-401. Zbl0685.60029MR1069286
- [25] G.L. O'Brien, Sequences of capacities, with connections to large-deviation theory, J. Theoretical Probab., Vol. 8, 1995. Zbl0847.60061
- [26] M. Rosenblatt, Markov Processes, Structure and Asymptotic Behavior, Springer-Verlag, Berlin, 1971. Zbl0236.60002MR329037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.