Degeneration of effective diffusion in the presence of periodic potential

Serguei M. Kozlov; Andrei L. Piatnitski

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 5, page 571-587
  • ISSN: 0246-0203

How to cite

top

Kozlov, Serguei M., and Piatnitski, Andrei L.. "Degeneration of effective diffusion in the presence of periodic potential." Annales de l'I.H.P. Probabilités et statistiques 32.5 (1996): 571-587. <http://eudml.org/doc/77546>.

@article{Kozlov1996,
author = {Kozlov, Serguei M., Piatnitski, Andrei L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {small periodic initial diffusion; logarithmic asymptotics},
language = {eng},
number = {5},
pages = {571-587},
publisher = {Gauthier-Villars},
title = {Degeneration of effective diffusion in the presence of periodic potential},
url = {http://eudml.org/doc/77546},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Kozlov, Serguei M.
AU - Piatnitski, Andrei L.
TI - Degeneration of effective diffusion in the presence of periodic potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 5
SP - 571
EP - 587
LA - eng
KW - small periodic initial diffusion; logarithmic asymptotics
UR - http://eudml.org/doc/77546
ER -

References

top
  1. [1] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  2. [2] S.M. Kozlov, Reducibility of quasiperiodic operators and homogenization, Transactions of Moscow Math. Soc., Vol. 46, 1983, pp. 99-123. Zbl0566.35036MR737902
  3. [3] S.M. Kozlov and A.L. Piatnitski, Effective diffusion for a parabolic operator with periodic potential, S.I.A.M. Journal Appl. Math., Vol. 53, 1, 1993. Zbl0805.35006MR1212756
  4. [4] S.M. Kozlov and A.L. Piatnitski, Averaging on a background of vanishing viscosity, Math. U.S.S.R. Sbomik, Vol. 70, 1, 1991, pp. 241-261. Zbl0732.35006MR1072299
  5. [5] Ya.B. Zeldovich, Exact solution of a diffusion problem in a periodic velocity field and turbulent diffusion, Dokl. Akad. Nauk U.S.S.R., Vol. 266, 1982, pp. 821-826. Zbl0511.76085MR678165
  6. [6] M. Avellaneda, Enhanced diffusivity and intercell transition layers in 2-D models of passive advection, J. Math. Phys., Vol. 32, 11, 1991, pp. 3209-3212. Zbl0736.76054MR1131710
  7. [7] A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows, S.I.A.M. Journal of Appl. Math. (to appear). Zbl0796.76084MR1265233
  8. [8] S.M. Kozlov, Geometric aspects of homogenization, Russ. Math. Surveys, Vol. 44, 2, 1989, pp. 91-144. Zbl0706.49029MR998362
  9. [9] S.M. Kozlov, Asymptoptics of Laplace-Dirichlet integrals, Functional Analisis and its applications, Vol. 24, 2, 1990, pp. 37-49. Zbl0714.58007MR1069406
  10. [10] S.M. Kozlov, Effective diffusion in the Fokker-Plank equation, Math Notes U.S.S.R. Acad. of Science, Vol. 45, 5, 1989, pp. 19-31. Zbl0687.47039MR1005458
  11. [11] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  12. [12] A.D. Wentzell and M.I. Freidlin, Fluctuations in Dynamical Systems Caused by Small Random Perturbations, Nauka, Moscow, 1979 (Russian). Zbl0522.60055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.