One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 1, page 83-112
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] A. Baernstein II, A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, A. ALVINO, et al., Eds. Symposia Mathematica, Cambridge University Press, Cambridge, Vol. 35, 1994, pp. 47-91. Zbl0830.35005MR1297773
- [2] A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math., Vol. 133, 1974, pp. 139-169. Zbl0315.30021MR417406
- [3] C. Borell, An inequality for a class of harmonic functions in n-space (Appendix) The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. MR466587
- [4] M. Essén, A theorem on convex sequences, Analysis, Vol. 2, 1982, pp. 231-252. Zbl0494.26008MR732333
- [5] M. Essén, The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. Zbl0335.31001MR466587
- [6] K. Haliste, Estimates of harmonic measures, Ark. Mat., Vol. 6, 1965, pp. 1-31. Zbl0178.13801MR201665
- [7] G.H. Hardy and J.E. Littlewood, Notes on the theory of series (VIII): an inequality, J. Lond. Math. Soc., Vol. 3, 1928, pp. 105-110. Zbl54.0226.02JFM54.0226.02
- [8] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1964.
- [9] A.R. Pruss, Radial rearrangement, harmonic measures and extensions of Beurling's shove theorem, Preprint, 1966. Zbl1035.31003
- [10] A.R. Pruss, Discrete harmonic measure, Green's functions and symmetrization: a unified probabilistic approach, Preprint, 1996.
- [11] J.R. Quine, Symmetrization inequalities for discrete harmonic functions, Preprint.