One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization

Alexander R. Pruss

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 1, page 83-112
  • ISSN: 0246-0203

How to cite

top

Pruss, Alexander R.. "One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization." Annales de l'I.H.P. Probabilités et statistiques 33.1 (1997): 83-112. <http://eudml.org/doc/77562>.

@article{Pruss1997,
author = {Pruss, Alexander R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; generalized discrete harmonic measure},
language = {eng},
number = {1},
pages = {83-112},
publisher = {Gauthier-Villars},
title = {One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization},
url = {http://eudml.org/doc/77562},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Pruss, Alexander R.
TI - One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 1
SP - 83
EP - 112
LA - eng
KW - random walk; generalized discrete harmonic measure
UR - http://eudml.org/doc/77562
ER -

References

top
  1. [1] A. Baernstein II, A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, A. ALVINO, et al., Eds. Symposia Mathematica, Cambridge University Press, Cambridge, Vol. 35, 1994, pp. 47-91. Zbl0830.35005MR1297773
  2. [2] A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math., Vol. 133, 1974, pp. 139-169. Zbl0315.30021MR417406
  3. [3] C. Borell, An inequality for a class of harmonic functions in n-space (Appendix) The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. MR466587
  4. [4] M. Essén, A theorem on convex sequences, Analysis, Vol. 2, 1982, pp. 231-252. Zbl0494.26008MR732333
  5. [5] M. Essén, The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. Zbl0335.31001MR466587
  6. [6] K. Haliste, Estimates of harmonic measures, Ark. Mat., Vol. 6, 1965, pp. 1-31. Zbl0178.13801MR201665
  7. [7] G.H. Hardy and J.E. Littlewood, Notes on the theory of series (VIII): an inequality, J. Lond. Math. Soc., Vol. 3, 1928, pp. 105-110. Zbl54.0226.02JFM54.0226.02
  8. [8] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1964. 
  9. [9] A.R. Pruss, Radial rearrangement, harmonic measures and extensions of Beurling's shove theorem, Preprint, 1966. Zbl1035.31003
  10. [10] A.R. Pruss, Discrete harmonic measure, Green's functions and symmetrization: a unified probabilistic approach, Preprint, 1996. 
  11. [11] J.R. Quine, Symmetrization inequalities for discrete harmonic functions, Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.