Slow entropy type invariants and smooth realization of commuting measure-preserving transformations
Anatole Katok; Jean-Paul Thouvenot
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 3, page 323-338
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKatok, Anatole, and Thouvenot, Jean-Paul. "Slow entropy type invariants and smooth realization of commuting measure-preserving transformations." Annales de l'I.H.P. Probabilités et statistiques 33.3 (1997): 323-338. <http://eudml.org/doc/77571>.
@article{Katok1997,
author = {Katok, Anatole, Thouvenot, Jean-Paul},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {measure-preserving actions; exponential growth rate; invariant measure},
language = {eng},
number = {3},
pages = {323-338},
publisher = {Gauthier-Villars},
title = {Slow entropy type invariants and smooth realization of commuting measure-preserving transformations},
url = {http://eudml.org/doc/77571},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Katok, Anatole
AU - Thouvenot, Jean-Paul
TI - Slow entropy type invariants and smooth realization of commuting measure-preserving transformations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 3
SP - 323
EP - 338
LA - eng
KW - measure-preserving actions; exponential growth rate; invariant measure
UR - http://eudml.org/doc/77571
ER -
References
top- [1] A. Katok, Monotone equivalence in ergodic theory, Math. USSR, Izvestija, Vol. 11, 1977, pp. 99-146. Zbl0379.28008MR442195
- [2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math IHES, Vol 51, 1980, pp. 137-173. Zbl0445.58015MR573822
- [3] A. Katok, Constructions in ergodic theory, preprint. Zbl1030.37001
- [4] A. Kakot and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, New York, 1995. Zbl0878.58020MR1326374
- [5] S. Katok, An estimate from above for the topological entropy of a diffeomorphism, Global theory of Dynamical systems, Lecture Note Math., Vol. 819, Springer Verlag, 1980, pp. 258-266. Zbl0448.58010MR591188
- [6] A.G. Kushnirenko, An upper bound of the entropy of classical dynamical systems, Sov. Math. Dokl., Vol. 6, 1965, pp. 360-362. Zbl0136.42905
- [7] D. Lind and J.-P. Thouvenot, Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory, Vol. 11, 1977, pp. 275-285. Zbl0377.28011MR584588
- [8] D. Ornstein and B. Weiss, Isomorphism theorem for amenable group actions, J. Anal. Math., Vol. 48, 1987, p. 1-141. Zbl0637.28015MR910005
- [9] Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, Vol. 32, 1977, pp. 55-114. Zbl0383.58011MR466791
- [10] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Math., Vol. 9, 1978, pp. 83-87. Zbl0432.58013MR516310
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.