Slow entropy type invariants and smooth realization of commuting measure-preserving transformations

Anatole Katok; Jean-Paul Thouvenot

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 3, page 323-338
  • ISSN: 0246-0203

How to cite

top

Katok, Anatole, and Thouvenot, Jean-Paul. "Slow entropy type invariants and smooth realization of commuting measure-preserving transformations." Annales de l'I.H.P. Probabilités et statistiques 33.3 (1997): 323-338. <http://eudml.org/doc/77571>.

@article{Katok1997,
author = {Katok, Anatole, Thouvenot, Jean-Paul},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {measure-preserving actions; exponential growth rate; invariant measure},
language = {eng},
number = {3},
pages = {323-338},
publisher = {Gauthier-Villars},
title = {Slow entropy type invariants and smooth realization of commuting measure-preserving transformations},
url = {http://eudml.org/doc/77571},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Katok, Anatole
AU - Thouvenot, Jean-Paul
TI - Slow entropy type invariants and smooth realization of commuting measure-preserving transformations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 3
SP - 323
EP - 338
LA - eng
KW - measure-preserving actions; exponential growth rate; invariant measure
UR - http://eudml.org/doc/77571
ER -

References

top
  1. [1] A. Katok, Monotone equivalence in ergodic theory, Math. USSR, Izvestija, Vol. 11, 1977, pp. 99-146. Zbl0379.28008MR442195
  2. [2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math IHES, Vol 51, 1980, pp. 137-173. Zbl0445.58015MR573822
  3. [3] A. Katok, Constructions in ergodic theory, preprint. Zbl1030.37001
  4. [4] A. Kakot and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, New York, 1995. Zbl0878.58020MR1326374
  5. [5] S. Katok, An estimate from above for the topological entropy of a diffeomorphism, Global theory of Dynamical systems, Lecture Note Math., Vol. 819, Springer Verlag, 1980, pp. 258-266. Zbl0448.58010MR591188
  6. [6] A.G. Kushnirenko, An upper bound of the entropy of classical dynamical systems, Sov. Math. Dokl., Vol. 6, 1965, pp. 360-362. Zbl0136.42905
  7. [7] D. Lind and J.-P. Thouvenot, Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory, Vol. 11, 1977, pp. 275-285. Zbl0377.28011MR584588
  8. [8] D. Ornstein and B. Weiss, Isomorphism theorem for amenable group actions, J. Anal. Math., Vol. 48, 1987, p. 1-141. Zbl0637.28015MR910005
  9. [9] Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, Vol. 32, 1977, pp. 55-114. Zbl0383.58011MR466791
  10. [10] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Math., Vol. 9, 1978, pp. 83-87. Zbl0432.58013MR516310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.