Slow entropy type invariants and smooth realization of commuting measure-preserving transformations
Anatole Katok; Jean-Paul Thouvenot
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 3, page 323-338
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] A. Katok, Monotone equivalence in ergodic theory, Math. USSR, Izvestija, Vol. 11, 1977, pp. 99-146. Zbl0379.28008MR442195
- [2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math IHES, Vol 51, 1980, pp. 137-173. Zbl0445.58015MR573822
- [3] A. Katok, Constructions in ergodic theory, preprint. Zbl1030.37001
- [4] A. Kakot and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, New York, 1995. Zbl0878.58020MR1326374
- [5] S. Katok, An estimate from above for the topological entropy of a diffeomorphism, Global theory of Dynamical systems, Lecture Note Math., Vol. 819, Springer Verlag, 1980, pp. 258-266. Zbl0448.58010MR591188
- [6] A.G. Kushnirenko, An upper bound of the entropy of classical dynamical systems, Sov. Math. Dokl., Vol. 6, 1965, pp. 360-362. Zbl0136.42905
- [7] D. Lind and J.-P. Thouvenot, Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory, Vol. 11, 1977, pp. 275-285. Zbl0377.28011MR584588
- [8] D. Ornstein and B. Weiss, Isomorphism theorem for amenable group actions, J. Anal. Math., Vol. 48, 1987, p. 1-141. Zbl0637.28015MR910005
- [9] Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, Vol. 32, 1977, pp. 55-114. Zbl0383.58011MR466791
- [10] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Math., Vol. 9, 1978, pp. 83-87. Zbl0432.58013MR516310