Average properties of random walks on Galton-Watson trees
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 3, page 359-369
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] L. Breiman, Probability, SIAM, Philadelphia, 1992. Zbl0753.60001MR1163370
- [2] D. Chen, J. Feng and M.P. Qian, The metastability of exponentially perturbed Markov chains, Science in China, Vol. 39, 1996, pp. 7-28. Zbl0863.60065MR1397231
- [3] T.M. Ligget, Interacting Particle Systems, Springer-Verlag, New York, 1985. Zbl0559.60078MR776231
- [4] R. Lyons, Random walks and percolation on trees, Ann. Prob., Vol. 18, 1990, pp. 931-958. Zbl0714.60089MR1062053
- [5] R. Lyons, R. Pemantle and Y. Peres, Biased random walks on Galton-Watson trees, Probability Theory and Related Fields, Vol. 106, 1996, pp. 249-264. Zbl0859.60076MR1410689
- [6] R. Lyons, R. Pemantle and Y. Peres, Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure, Ergod. Th. & Dynam. Sys., Vol. 15, 1995, pp. 1-27. Zbl0819.60077
- [7] R. Lyons, R. Pemantle and Y. Peres, Unsolved problems concerning random walks on trees. In "Classical and Modem Branching Processes", K.B. Athreya and P. Jagers (editors), Springer-Verlag, New York, 1996, pp. 223-238. Zbl0867.60067MR1601753
- [8] F. Solomon, Random walk in a random environment, Ann. Prob., Vol. 3, 1975, pp. 1-31. Zbl0305.60029MR362503